МИНИСТЕРСТВО ЭКОНОМИЧЕСКОГО РАЗВИТИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНАЯ СЛУЖБА ПО АККРЕДИТАЦИИ

(РОСАККРЕДИТАЦИЯ)

ПРИКАЗ

14.04.2021 Москва № С-688

О сокращении области аккредитации Федерального бюджетного учреждения «Государственный региональный центр стандартизации, метрологии и испытаний в Республике Башкортостан»

В соответствии с пунктом 2 части 7 статьи 23 Федерального закона от 28 декабря 2013 г. № 412-ФЗ «Об аккредитации в национальной аккредитации», постановлением Правительства Российской Федерации от 17 октября 2011 г. № 845 «О Федеральной службе по аккредитации», пунктами 127 и 129 Административного регламента по предоставлению Федеральной службой аккредитации государственной услуги по аккредитации юридических лиц индивидуальных предпринимателей в национальной системе аккредитации, расширению, сокращению области аккредитации, подтверждению компетентности аккредитованных лиц, прекращению действия аккредитации, внесению изменений в сведения реестра аккредитованных лиц, утвержденного приказом Федеральной службы по аккредитации от 29 апреля 2020 г. № 84, приказом Федеральной службы по аккредитации от 17 апреля 2020 г. № 76 «О распределении обязанностей между Федеральной руководителем службы ПО аккредитации руководителя Федеральной службы по аккредитации», по результатам проверки сокращении области аккредитации Федерального учреждения «Государственный региональный центр стандартизации, метрологии и испытаний в Республике Башкортостан» (уникальный номер об аккредитации в реестре аккредитованных лиц № RA.RU.311406, далее – Аккредитованное лицо), приказываю:

- 1. Сократить прилагаемую заявленную область аккредитации Аккредитованного лица (дело о предоставлении государственной услуги от 6 апреля 2021 г. № 4366-ГУ).
- 2. Управлению аккредитации внести сведения о сокращении области аккредитации Аккредитованного лица в реестр аккредитованных лиц, направить в адрес Аккредитованного лица копию настоящего приказа и сокращаемую область аккредитации.
- 3. Контроль за исполнением настоящего приказа воздожить на исполняющего обязанности начальника Управления актирина в приказа воздожно на исполняющего обязанности начальника Управления в предусти в приказа в приказа

Кому выдан: Гоголев Дмитрий Владимирович

Кем выдан: ООО «НТСсофт» Действителен: с 13.04.2020 до 13.07.2021

Заместитель руководителя

СВЕДЕНИЯ О СЕРТИФИКАТЕ ЭП

Д.В. Гоголев

14.04.2021 СОКРАЩЕНА

ОБЛАСТЬ АККРЕДИТАЦИИ

Федеральное бюджетное учреждение

«Государственный региональный центр стандартизации, метрологии и испытаний в Республике Башкортостан» (ФБУ «ЦСМ Республики Башкортостан»)

наименование юридического лица или фамилия, имя и отчество (в случае, если имеется) индивидуального предпринимателя

450006, Республика Башкортостан, г. Уфа, бульвар Ибрагимова, 55/59; 450006, Республика Башкортостан, г. Уфа, бульвар Ибрагимова, 82; 453121, Республика Башкортостан, г. Стерлитамак, ул. Дружбы, 39; 453107, Республика Башкортостан, г. Стерлитамак, ул. Фурманова, 18; 452684, Республика Башкортостан, г. Нефтекамск, ул. Нефтяников, 18; 453505, Республика Башкортостан, г. Белорецк, ул. Кирова, 68; 452601, Республика Башкортостан, г. Октябрьский, ул. Луначарского, 4; 453256, Республика Башкортостан, город Салават-6, Северная промзона

адреса мест осуществления деятельности

Поверка средств измерений

AБ шифр поверительного клейма

$N_{\underline{0}}$	Измерения, тип (группа)	Метрологические требования		
п/п	средств измерений	диапазон измерений	погрешность и (или) неопределенность (класс, разряд)	
1	2	3	4	5
	450006, Республика Б	ашкортостан, г. Уфа, б	ульвар Ибрагимова, 55/5	59
	ИЗМЕРЕІ	НИЯ ГЕОМЕТРИЧЕСК	ИХ ВЕЛИЧИН	
13	Меры длины штриховые (линейки измерительные металлические)	(0 – 1000) мм	$\Pi\Gamma \pm (0,10-0,25) \text{ mm}$	
23	Штангенциркули штангенрейсмасы штангенглубиномеры	(0-2000) mm $(0-1000)$ mm $(0-400)$ mm	$\Pi\Gamma \pm (0.03 - 0.2) \text{ mm}$	
45	Шаблоны путевые контрольные	1519, 5 мм	$\Pi\Gamma\pm0,1$ мм	
46	Сита лабораторные	(0,04-2,5) mm	$\Pi\Gamma \pm (0,004 - 0,140)$ mm	
48	Компараторы концевых мер длины	(0 - 100) mm	$\Pi\Gamma \pm (0.05 + 0.5L) \text{ MKM}$	

1	2	3	4	5
77	Плиты поверочные	(400 x 400) mm (1000 x 630) mm (1600 x 1000) mm	3 разряд КТ 0 3 разряд КТ 0; 1; 2; 3 КТ 1; 2; 3	
106	Дефектоскопы ультразвуковые с комплектом пьезопреобразователей	$(1\cdot10^{-3} - 9,99\cdot10^{-1})$ м $(1\cdot10^{-6} - 2\cdot10^{-3})$ с $(1-20)$ дБ	$\Pi\Gamma \pm 1.5 \%$ $\Pi\Gamma \pm 1.0 \%$ $\Pi\Gamma \pm 4.0 \%$	
108	Толщиномеры контактные ультразвуковые	(0,6-300) mm	$\Pi\Gamma \pm (1 - 15) \%$	
109	Приборы для определения толщины защитного слоя бетона и расположения арматуры	диаметр арматуры $(5-40)$ мм толщина защитного слоя $(2-185)$ мм	$\Pi\Gamma \pm (1-4)$ mm $\Pi\Gamma \pm 10$ %	-
110	Толщиномеры покрытий	(0,005-10) mm	$\Pi\Gamma \pm (0,5-10)$ мкм	
118	Тахографы цифровые	(10 – 60) с (10 – 20) км/ч (200 – 240) км/ч	$\Pi\Gamma \pm (1-2)$ с $\Pi\Gamma \pm (0,1-1)$ км/ч $\Pi\Gamma \pm (2-3)$ км/ч	
1	Дефектоскопы, установки и системы дефектоскопические, средства измерений других наименований аналогичного назначения	$(3,1-3,2)$ мм $(8\cdot10^{-2}-1590)$ кА/м $(8\cdot10^{-2}-8)$ кА/м $(60-1590)$ кА/м $(60-1590)$ кА/м $(0-7500)$ А $(0-1320)$ А $(5000-7500)$ А $(0-50)$ А, $(45-1000)$ Гц $(1\cdot10^{-2}-2,5\cdot10^9)$ Гц $(1\cdot10^{-2}-1)$ Гц $(12\cdot10^6-2,5\cdot10^9)$ Гц	$\Pi\Gamma \pm 0,1$ мм и более $\Pi\Gamma \pm (4-10) \%$ $\Pi\Gamma \pm 4 \%$ и более $\Pi\Gamma \pm 4 \%$ и более $\Pi\Gamma \pm 0,4 \%$ и более $\Pi\Gamma \pm 0,4 \%$ и более $\Pi\Gamma \pm 0,4 \%$ и более $\Pi\Gamma \pm 0,2 \%$ и более $\Pi\Gamma \pm 0,2 \%$ и более $\Pi\Gamma \pm 2\cdot 10^{-5} \%$ и более $\Pi\Gamma \pm 2\cdot 10^{-5} \%$ и более $\Pi\Gamma \pm 2\cdot 10^{-5} \%$ и более	Дополне- ние № 1 к области аккредита- ции
	<u>ИЗМЕРЕНИЯ ПАРАМЕТРО</u>			ЦЕСТВ
165	Преобразователи, расходомеры, счетчики массового расхода жидкости	(0,02 – 300) т/ч	$\Pi\Gamma \pm (0,15-10)\%$	
175	Бюретки, пипетки	(0,5 – 100) мл	$\Pi\Gamma \pm (0{,}002-0{,}1)$ мл 1 разряд	
176	Бюретки	(10 – 2000) мл	$\Pi\Gamma \pm (0.05 - 2)$ мл 2 разряд	
177	Бюретки, пипетки	(0,5-100) мл	KT 1; 2	

1	2	3	4	5
178	Пипетки	(10 – 2000) мл	$\Pi\Gamma \pm (0,04-0,4)$ мл 1 разряд	
179	Пипетки	(10 – 2000) мл	KT 1; 2	
182	Приемники-ловушка	(2,0-10) мл	$\Pi\Gamma \pm (0,025-0,100)$ мл	
183	Дозаторы, шприцы	$(10^{-6} - 10)$ мл	$\Pi\Gamma \pm (12 - 4) \%$	
184	Дозаторы	(10 – 2000) мл	$\Pi\Gamma \pm (2,5-4)\%$	
194	Установки измерительные аэродинамические	(0,1-30) M/c	$\Pi\Gamma \pm (0.02 + 0.02v) \text{ m/c}$	
	ИЗМЕРЕНИЯ ФИЗИКО-	ХИМИЧЕСКОГО СОСТА	ВА И СВОЙСТВ ВЕЩЕС	СТВ
247	Измерители деформации клейковины	(0-120) y.e.	$\Pi\Gamma \pm (1 - 2.5)$ y.e.	
254	Тензиометры	(10 - 5000) мг	$\Pi\Gamma \pm (0,5-1,0)\%$	
275	Анализаторы газов и газообразующих элементов в воде	$(0 - 500)$ мг/дм 3	$\Pi\Gamma\pm0,2$ % и более	
283	Анализаторы воды и растворов	(0,0005-0,050) мг/дм ³	$\Pi\Gamma$ ± 30 % и более	
	ТЕПЛОФИЗИЧІ	ЕСКИЕ И ТЕМПЕРАТУР	РНЫЕ ИЗМЕРЕНИЯ	
313	Пирометры монохроматические визуальные	(1073 – 2273) K (800 – 2000) °C	$\Pi\Gamma \pm (14 - 20) \text{ K}$ $\Pi\Gamma \pm (14 - 20) \text{ °C}$	

1	2	3	4	5
19	Измерители	[(-270) – 2500] °C	$\Pi\Gamma \pm (2,18\cdot10^{-4} -$	Дополне-
	температуры,		$-2.2 \cdot 10^{-4}) \%$	ние № 1 к
	преобразователи			области
	сигналов от	(0-50) A	$\Pi\Gamma \pm (7,3\cdot10^{-4}-1,3\cdot10^{-1})$	аккредита
	термоэлектрических		2) %	ции
	преобразователей и	$(3\cdot10^{-2}-50)$ A	$\Pi\Gamma \pm 7,3\cdot 10^{-4}$ % и более	
	термопреобразователей		,	
	сопротивлений,	(0 - 1000) B	$\Pi\Gamma \pm (2,18\cdot10^{-4} -$	
	устройства контроля и		$-5,1\cdot10^{-4})\%$	
	регистрации, блоки		$\Pi\Gamma \pm 2,18 \cdot 10^{-4} \% $ и	
	преобразования	(10 - 1000) B	более	
	сигналов,	Name 2 - Name and State Co.		
	потенциометры, мосты	(0-120) A,	$\Pi\Gamma \pm 0,0061$ % и более	
	измерительные,	$(1\cdot10^{-1} - 3\cdot10^4)$ Гц		
	логометры,			
	милливольтметры	(0-1000) B,	$\Pi\Gamma \pm 0,006 \%$ и более	
	пирометрические,	$(1\cdot10^{-1}-1\cdot10^6)$ Гц		
	средства измерений других наименований	2 12		
	аналогичного	$(6 \cdot 10^3 - 5 \cdot 10^{12})$ Om	ПГ ± 0,0001 % и более	
	назначения, с			
	унифицированными	$(1\cdot10^{-2}-2,5\cdot10^9)$ Гц	$\Pi\Gamma \pm 2.10^{-5}$ % и более	
	входными и выходными			
	сигналами, с функциями			
	преобразования в другие			
	величины			
		РЕНИЯ ВРЕМЕНИ И Ч	АСТОТЫ	
326	Приемники компараторы	$(1\cdot10^4-2\cdot10^5)$ Гц	ПГ ±5·10 ⁻¹¹ за сутки	30.1
330	Установки для поверки	(0.01 - 100) c	ПГ 1 мс	
	секундомеров			
331	Приборы для определения	120 с/сут	ПГ 2 с за сутки	
	хода механических часов			
333	Секундомеры	(0.1 - 1200) c	$\Pi\Gamma \pm (0.03 - 0.05) c$	
	электрические		(1,12)	
334	Секундомеры	$(5 \cdot 10^{-6} - 1 \cdot 10^{6})c$	$\Pi\Gamma \pm 1.10^{-6}$	
	калибраторы			
335	Секундомеры	(0,1-3600) c	$\Pi\Gamma \pm (0,1-1) c$ 3a	
	механические		30 мин	
336	Секундомеры	(0,1-9999,99) c	$\Pi\Gamma \pm 3.5 \cdot 10^{-5}$	
	электронные			
337	Радиочасы	1 с – 24ч	$\Pi\Gamma \pm (0,001-0,5) c$	
341	Измерители длительности	(1-10800) c	$\Pi\Gamma \pm 1.0 c$	
	соединений	20 55 	8	
342	Счетчики импульсов	(1 - 999999)	ПГ ± 1 ед. сч	
		$(0-1\cdot10^6)$ Гц	10° 0000 0000	
343	Аппаратура геодезическая	(0,5-100000) M	$\Pi\Gamma\pm 5$ мм	
	спутниковая			
	двухчастотная			
344	Аппаратура геодезическая	(0.5 - 20000) M	$\Pi\Gamma \pm (0,5-10) \text{ MM}$	
	спутниковая		1	

1	2	3	4	5
	одночастотная			
345	Измерители скорости	(1-400) km/y	$\Pi\Gamma \pm 1$ км/ч	
	движения транспортных			
	средств дистанционные			
346	Программаторы	(20 – 200) км/ч	$\Pi\Gamma \pm 0.2\%$	
	тахографов	(1-65000) имп.	$\Pi\Gamma \pm 0.2\%$	
347	Вычислители для узлов	(0 – 20) MA	$\Pi\Gamma \pm 0.02\%$	
	учёта нефти с массовыми	$(1-1\cdot10^4)$ Гц	$\Pi\Gamma \pm 0,001\%$	
	счётчиками-	(= = =) =]	= 0,001 /0	
	расходомерами,			
	вычислители для узлов			
	учёта нефти с объёмными			
	счётчиками-			
	расходомерами			
348	Средства измерений	(0 – 60) км	$\Pi\Gamma \pm (0,1-15) \text{ M}$	
	разностей координат		(3,1 10)	
	кодовыми методами по			
	сигналам КНС			
	ИЗМЕРЕНИЯ ЭЛ	ІЕКТРИЧЕСКИХ И МАГН	НИТНЫХ ВЕЛИЧИН	
365	Средства измерений			
	коэффициента мощности,	[(-1)-1]	$\Pi\Gamma \pm (0,003 - 0,0045)$	
	угла фазового сдвига,	[(-1)-1] $(0-360)^{\circ}$		
	(фазометры, измерители		$\Pi\Gamma \pm (0.03 - 0.18)^{\circ}$	
	разности фаз, средства			
	измерений других			
	наименований			
	аналогичного назначения)			
367	Средства измерений,			
	предназначенные для	(0 - 120) кВ	$\Pi\Gamma \pm (0,1-0,5) \%$	
	измерения и	$(1\cdot10^{-2}-1,4\cdot10^7)$ Гц	80 95 34 980	
	воспроизведения	(0 - 500) MA	$\Pi\Gamma \pm (0,3-1,0)\%$	
	электрического	(0 - 500) MA	$\Pi\Gamma \pm (0,3-1,0)\%$	
	напряжения	50 Гц		
	(киловольтметры,	$(0.01 - 1000) \Gamma_{\mathrm{H}}$	$\Pi\Gamma \pm (0.01 - 1) \%$	
	измерительные	$(1 \cdot 10^{-6} - 5 \cdot 10^{12})$ Om	$\Pi\Gamma \pm (1 - 1,3) \%$	
	преобразователи,			
	высоковольтные	$(1 \cdot 10^{-6} - 1 \cdot 10^{-4})$ Om	$\Pi\Gamma \pm 1$ % и более	
	измерительные и	$(5 \cdot 10^{10} - 5 \cdot 10^{12}) \text{ Om}$	$\Pi\Gamma \pm 1$ % и более	
	испытательные системы,			
	высоковольтные			
	аппараты и установки,			
	пробойные установки,			
	средства измерений			
	других наименований			
260	аналогичного назначения)	(0.5. 26.000) 1.77	HE - (0.00 0.05) 0(
368	Средства измерений	(0,5 - 36 000) A / (1; 5) A	$\Pi\Gamma \pm (0.02 - 0.05) \%$	
	коэффициента и угла		$\Pi\Gamma \pm (1,5-3)$ мин	
	масштабного		КТ 0,02; 2 разряд	
	преобразования	(5.10-3 42.2.103)		
	синусоидального тока	$(5 \cdot 10^{-3} - 43, 2 \cdot 10^{3}) \text{ A} /$		

1	2	3	4	5
	(трансформаторы тока, средства измерений других наименований аналогичного назначения)	(0,01 - 6) A (50; 60) Γц (18 000 - 36 000) A / (1; 5) A	$\Pi\Gamma \pm 0.02$ % и более, $\Pi\Gamma \pm 1.5$ мин и более, KT 0.02; 0.05; 0.1; 0.2; 0.2S; 0.5; 0.5S; 1; 3; 5; 5P; 10; 10P, 2 разряд	
		(21,6·10³ - 43,2·10³) A / (0,01 - 6) A (50; 60) Γμ		
378	Средства измерений удельной электрической проводимости (измерители электропроводности, средства измерений других наименований аналогичного назначения)	(0,5 – 3,5) MC _M / _M	ПГ ±2 % и более	
20	Средства измерений силы постоянного тока, амперметры, гальванометры, средства измерений других наименований аналогичного назначения	(0 – 6000) A	ПГ ± (0,002 – 0,05) %, 1, 2 разряд	Дополнение № 1 к области аккредита- ции
21	Средства измерений, предназначенные для масштабного преобразования, шунты, средства измерений других наименований аналогичного назначения	(0,01 – 1000) A (0,01 – 0,015) A	$\Pi\Gamma \pm (0,005-0,02)$ % $\Pi\Gamma \pm 0,005$ % и более	Дополнение № 1 к области аккредита- ции
22	Средства измерений, предназначенные для воспроизведения постоянного электрического напряжения и электродвижущей силы, меры ЭДС, нормальные элементы, меры напряжения, средства измерений других наименований аналогичного	(1,018049 – 1,018130) B	ПГ ±1·10 ⁻⁴ % и более, НСТБ ± 5·10 ⁻⁶ В и более, 2, 3 разряд	Дополнение № 1 к области аккредита- ции

1	2	3	4	5
	назначения			
23	Средства измерений постоянного электрического напряжения, вольтметры, средства измерений других наименований аналогичного назначения	(0 – 3000) B	$\Pi\Gamma \pm (6,3\cdot10^{-4} - 0,05)$ %, 2, 3 разряд	Дополнение № 1 к области аккредита- ции
24	Средства измерений силы переменного тока, амперметры, средства измерений других наименований аналогичного назначения	(0-200) кА, $(1\cdot10^{-1}-3\cdot10^4)$ Гц (0-200) кА, $(1\cdot10^{-1}-30)$ Гц	$\Pi\Gamma \pm (0,0055 - 0,05)$ %, 2 разряд $\Pi\Gamma \pm 0,0055 \% \text{ и}$ более, 2 разряд $\Pi\Gamma \pm 0,0055 \% \text{ и}$	Дополнение № 1 к области аккредита- ции
		$(2\cdot10^4 - 3\cdot10^4)$ Гц	более, 2 разряд	
25	Средства измерений силы переменного электрического тока, клещи	$(0-2,5\cdot10^3)$ A $(2\cdot10^3-2,5\cdot10^3)$ A	$\Pi\Gamma \pm (0.02 - 1)$ % $\Pi\Gamma \pm 0.02$ % и более	Дополнение № 1 к области аккредита-
	электроизмерительные, средства измерений других наименований аналогичного назначения	$(0-5\cdot10^3)$ А, $(0-3\cdot10^4)$ Гц $(0-5\cdot10^3)$ А, $(2\cdot10^4-3\cdot10^4)$ Гц	$\Pi\Gamma \pm (0.02 - 0.3)$ % $\Pi\Gamma \pm 0.02$ % и более	ции
26	Средства измерений переменного электрического напряжения, вольтметры, средства измерений других наименований аналогичного назначения	$(2.10^{-3.10})$ г ц $(0-42)$ кВ, $(1.10^{-1}-1.10^{6})$ Г ц $(0-42)$ кВ, $(1.10^{-1}-30)$ Г ц $(0-42)$ кВ, $(1.10^{4}-1.10^{6})$ Г ц	ПГ ± (0,006 – 0,05) %, 2, 3 разряд ПГ ± 0,006 % и более, 2, 3 разряд ПГ ± 0,006 % и более, 2, 3 разряд	Дополнение № 1 к области аккредита- ции
27	Средства измерений предназначенные для воспроизведения и измерения электрических величин, калибраторы	воспроизведение $(0-7,5\cdot10^3)$ А $(50-7,5\cdot10^3)$ А	$\Pi\Gamma \pm (7,3\cdot 10^{-4} - 3\cdot 10^{-3})$ %, 1, 2 разряд $\Pi\Gamma \pm 7,3\cdot 10^{-4}$ % и более, 1, 2 разряд	Дополнение № 1 к области аккредита- ции
	универсальные и многофункциональные, приборы универсальные измерительные,	$(0-1,4\cdot10^5)$ B	$\Pi\Gamma \pm (1\cdot10^{-4} - 1,1\cdot10^{-4})$ %, 2, 3 разряд	
	мультиметры цифровые,	$(3.10^3 - 1.4.10^5)$ B	$\Pi\Gamma \pm 1.10^{-4}$ % и более,	

1	2	3	4	5
	потенциометры, компараторы, измерители нестабильности, имитаторы электродной	$(0-36\cdot10^3)$ А, $(1\cdot10^{-1}-1\cdot10^6)$ Гц	2, 3 разряд ПГ ±(6,1·10 ⁻³ − − 1,7·10 ⁻²) %, 1, 2 разряд	
	системы, анализаторы, характериографы, средства измерений других наименований	$(51 - 36 \cdot 10^3)$ А, $(1 \cdot 10^{-1} - 1 \cdot 10^6)$ Гц	$\Pi\Gamma \pm 6,1\cdot 10^{-3}$ % и более, 1, 2 разряд	
	аналогичного назначения, с функциями	$(0-36\cdot10^3)$ А, $(3\cdot10^4-1\cdot10^6)$ Гц	$\Pi\Gamma \pm 6,1\cdot 10^{-3}$ % и более, 1, 2 разряд	
	преобразования в другие величины	$(1050 - 1,4\cdot10^5)$ В, $(1\cdot10^{-1} - 1\cdot10^6)$ Гц	$\Pi\Gamma \pm 4,4\cdot 10^{-3}$ % и более, 2, 3 разряд	
		$(0-5\cdot10^{12}) \text{ Om}$	$\Pi\Gamma \pm (1.10^{-4} - 2.10^{-3}) \%,$	
		$(2 \cdot 10^9 - 5 \cdot 10^{12}) \text{ Om}$	2, 3 разряд ПГ ± 1·10 ⁻⁴ % и более, 2, 3 разряд	
		$(1\cdot10^{-2} - 2,5\cdot10^9)$ Гц $(1\cdot10^7 - 2,5\cdot10^9)$ Гц	$\Pi\Gamma \pm (2 \cdot 10^{-5} - 1 \cdot 10^{-4}) \%$ $\Pi\Gamma \pm 2 \cdot 10^{-5} \%$ и более	
		$(4\cdot10^{-10} - 600) \text{ c}$ $(4\cdot10^{-10} - 66,625\cdot10^{-6}) \text{ c}$	$\Pi\Gamma \pm (2\cdot10^{-5} - 1\cdot10^{-4})$ % $\Pi\Gamma \pm 2\cdot10^{-5}$ % и более	
		(5·10 ⁸ — — 99999999) имп.	ПГ 0 имп и более	
		$(1\cdot10^{-16}-10) \Phi$	$\Pi\Gamma \pm (0.04 - 0.25)$ %, 3 разряд	
		$(1 \cdot 10^{-16} - 1, 9 \cdot 10^{-10}) \Phi$ $(0,11 - 10) \Phi$	$\Pi\Gamma \pm 0.04$ % и более, 3 разряд $\Pi\Gamma \pm 0.04$ % и более, 3 разряд	
		(1·10 ⁻¹⁰ – 1·10 ⁶) Гн	$\Pi\Gamma \pm (0.03 - 0.5)$ %, 2 разряд	
		(1·10 ⁻¹⁰ – 1·10 ⁻³) Гн	ПГ ± 0,03 % и более, 2 разряд ПГ ± 0,03 % и более,	
		(10 − 1·10 ⁶) Γ _H	2 разряд	
		[(-270) – 2500] °C	$\Pi\Gamma \pm (2,18\cdot10^{-4} - 3,2\cdot10^{-3})\%$	
		измерение $(0-2,5\cdot10^3)$ А	$\Pi\Gamma \pm (5,5\cdot10^{-3} - 8\cdot10^{-3})$ %, 1, 2 разряд	

1	2	3	4	5
		$(0 - 1 \cdot 10^5) \text{ B}$ $(3 \cdot 10^4 - 1 \cdot 10^5) \text{ B}$	$\Pi\Gamma \pm (1\cdot10^{-4} - 1,1\cdot10^{-4})$ %, 2; 3 разряд $\Pi\Gamma \pm 1\cdot10^{-4}$ % и более, 2; 3 разряд	
		(0 – 9999) А, (1·10 ⁻¹ – 3·10 ⁴) Гц	ПГ ± (0,006 – 4·10 ⁻²) % 1; 2 разряд	
		(0 – 9999) А, (1·10 ⁻¹ – 3) Гц	ПГ ± 0,006 % и более, 1; 2 разряд	
		$(0-1\cdot10^5)$ В, $(0-1\cdot10^9)$ Гц	$\Pi\Gamma \pm (0,006 - 8,5\cdot10^{-3})$ %, 2; 3 разряд	
		$(0-1\cdot10^5)$ В, $(0-3)$ Γ ц	ПГ ± 0,006 % и более, 2; 3 разряд	
		$(0-1\cdot10^5)$ В, $(1\cdot10^6-1\cdot10^9)$ Гц	ПГ ± 0,006 % и более, 2; 3 разряд	
		$(0-1,0455\cdot10^6)$ BT (0-10) BT $(1\cdot10^6-1,0455\cdot10^6)$ BT	$\Pi\Gamma \pm (0,036-1,6)$ % $\Pi\Gamma \pm 0,036$ % и более $\Pi\Gamma \pm 0,036$ % и более	
		$(0-9,999\cdot10^6)$ Вт (вар, В·А), $(40-5000)$ Гц	$\Pi\Gamma \pm (0.025 - 0.05)$ %, 2 разряд	
		$(0-5\cdot10^{12}) \text{ Om}$	$\Pi\Gamma \pm (1\cdot10^{-4} - 17\cdot10^{-4})$ %, 2; 3 разряд	
		(0 – 2,5·10 ⁹) Гц	$\Pi\Gamma \pm (2 \cdot 10^{-5} - 1 \cdot 10^{-4}) \%$	
		(1,2·10 ⁹ – 2,5·10 ⁹) Гц	$\Pi\Gamma \pm 2 \cdot 10^{-5}$ % и более	
		(0 – 0,11) Φ	$\Pi\Gamma \pm (0.04 - 0.15) \%$,	
		(0,1 – 0,11) Ф	3 разряд ПГ ± 0,04 % и более, 3 разряд	
		(1·10-6 – 3) Гн	$\Pi\Gamma \pm (0,03-0,25)$ %, 2 разряд	
		(2 – 3) Гн	$\Pi\Gamma \pm 0.03~\%$ и более, 2 разряд	
		(0,1 – 99,9) %	$\Pi\Gamma \pm (1-1,2)\%$	

1	2	3	4	5
		[(-1) – 1]	$\Pi\Gamma \pm (0,003 - 0,5)$	
		(0 – 360)°	$\Pi\Gamma \pm (0.03 - 1)^{\circ}$	
		[(-270) – 2500] °C	$\Pi\Gamma \pm (1 \cdot 10^{-4}7, 1 \cdot 10^{-4}) \%$	
		[(-454) – 4532] °F	$\Pi\Gamma \pm (1.10^{-4} - 0.42) \%$	
		[(-454) – (-328)] °F	$\Pi\Gamma \pm 1.10^{-4}$ % и более	
		[2502 – 4532] °F	$\Pi\Gamma \pm 1.10^{-4}$ % и более	
		$(4.10^{-10} - 100) c$	$\Pi\Gamma \pm (2 \cdot 10^{-5} - 4,7 \cdot 10^{-3}) \%$	
		$(4\cdot10^{-10}-6,7\cdot10^{-8})$ c	$\Pi\Gamma \pm 2.10^{-5}$ % и боле	
		(3,2 – 100) c	$\Pi\Gamma \pm 2.10^{-5}$ % и боле	
		$(1,0-2,82\cdot10^3)$ пКл	$\Pi\Gamma \pm (0,006-5) \%$	
		(1·10 ⁻³ – – 999,999) mB/(m·c ⁻²)	$\Pi\Gamma \pm (0,006 - 5) \%$	
		(1·10 ⁻³ – – 999,999) пКл/(м·с ⁻²)	$\Pi\Gamma \pm (0,006-5) \%$	
28	Средства измерения,	$(0,1-5\cdot10^4)$	$\Pi\Gamma \pm (1.10^{-4} - 0.03) \%$	(A) (A)
	предназначенные для определения погрешности	[(-20) – 20] %	$\Pi\Gamma \pm (1.10^{-4} - 5.10^{-4}) \%$	№ 1 к области аккредита-
	трансформаторов, шунтов и параметров	(0 – 999) кА (45 – 65) Гц	$\Pi\Gamma \pm (0,05-0,1)$ %	ции
	нагрузки вторичных цепей трансформаторов, приборы сравнения,	[(-1) – 1]	$\Pi\Gamma \pm (3.10^{-3} - 0.02)$	
	дифференциальные аппараты, приборы для	(0 – 360)°	$\Pi\Gamma \pm (0.03-0.05)^{\circ}$	
	измерения электроэнергетических	(0 – 250) кОм	$\Pi\Gamma \pm (2.10^{-4} - 1.00^{-4})$	
	величин, анализаторы		− 5,1·10 ⁻⁴) Ом	
	трансформаторов, средства измерений других наименований аналогичного			
	назначения			
29	Средства измерений	$(0-1,0455\cdot10^6)$ BT	$\Pi\Gamma \pm (0,036-0,05)$ %	Дополнение
	электрической мощности, ваттметры, варметры, измерители	$(12 \cdot 10^3 - 1,0455 \cdot 10^6)$ BT	$\Pi\Gamma \pm 0,036$ % и более	№ 1 к области аккредита-

1	2	3	4	5
	полной мощности, средства измерений других наименований аналогичного	(0 – 3,456·10 ⁶) Вт (вар, В·А), (40 – 5000) Гц	$\Pi\Gamma \pm (0.025 - 0.05)$ %, 2 разряд	ции
	назначения	(3·10 ⁶ – 3,456·10 ⁶) Вт (вар, В·А), (40 – 5000) Гц	$\Pi\Gamma \pm 0,025~\%$ и более, 2 разряд	
30	Средства измерений электрической энергии, счетчики электрической	энергия (кВт-ч, квар-ч),	$\Pi\Gamma \pm (0.025 - 0.05) \%,$ KT 0.05	Дополнение № 1 к области
	энергии, средства измерений других наименований	(1 – 960) В, (40 – 70) Гц	$\Pi\Gamma \pm (0.02 - 0.05)$ %, 2 разряд	аккредита- ции
	аналогичного назначения	(1 – 4) В, (40 – 70) Гц	$\Pi\Gamma \pm 0.02~\%$ и более, 2 разряд	
		(800 – 960) В, (40 – 70) Гц	$\Pi\Gamma \pm 0,02~\%$ и более, 2 разряд	
		(0 – 3300) А, (40 – 70) Гц (3000 – 3300) А, (40 – 70) Гц	$\Pi\Gamma\pm(0.02-0.05)$ %, 2 разряд $\Pi\Gamma\pm0.02$ % и более, 2 разряд	
		(1,5·10 ⁻² – -3,456·10 ⁶) Вт (вар, В·А), (40 – 70) Гц	$\Pi\Gamma \pm (0.025 - 0.035)$ %, 2 разряд	
		(1,5·10 ⁻² – 3·10 ⁻²) Вт (вар, В·А), (40 – 70) Гц	$\Pi\Gamma \pm 0,025~\%$ и более, 2 разряд	
		$(0,795\cdot10^6 - 3,456\cdot10^6)$ Вт (вар, В·А), $(40-70)$ Гц	$\Pi\Gamma \pm 0,025~\%$ и более, 2 разряд	
		[(-1) – 1]	$\Pi\Gamma \pm (0,003 - 0,005)$	
		(0 – 360)°	$\Pi\Gamma \pm (0.03 - 0.2)^{\circ}$	
		(40 – 70) Гц	$\Pi\Gamma \pm (2\cdot10^{-5} - 0.014)\%$	
		[(-100) – 200] %	$\Pi\Gamma \pm (0,003 - 0,05) \%$	
31	Средства измерения, предназначенные для измерения и	(0 – 140) кВ	$\Pi\Gamma \pm (0.2 - 0.5)$ %, 2 разряд	Дополнение № 1 к области
	воспроизведения	(0 – 140) κB	$\Pi\Gamma \pm (0,1-0,5)$ %,	аккредита-

1	2	3	4	5
	электрического величин,	$(1\cdot10^{-2}-2\cdot10^7)$ Гц	2 разряд	ции
	киловольтметры,			
	измерительные	(120 - 140) кВ	$\Pi\Gamma \pm 0,1 \%$ и более,	
	преобразователи,	$(1\cdot10^{-2}-2\cdot10^{7})$ Гц	2 разряд	
	высоковольтные			
	измерительные и	(0-2) A	$\Pi\Gamma \pm (0.044 - 1) \%$	
	испытательные системы,	(0-2) A	$\Pi\Gamma \pm (0,2-1)\%$	
	аппараты и установки,	$(1\cdot10^{-2}-5\cdot10^3)$ Гц	111 = (0,2 1) /0	
	пробойные установки,	(0-2) A	$\Pi\Gamma \pm 0.2$ % и более	
	средства измерений и	$(65-5\cdot10^3)$ Гц	111 ± 0,2 70 H 00.100	
	испытаний других	(00 0 10) 1 1		
	наименований	$(1.10^{-5} - 5.10^{12})$ Om	$\Pi\Gamma \pm (0,1-1,31)\%$	
	аналогичного	$(1 \cdot 10^{-5} - 1 \cdot 10^{-4})$ OM	$\Pi\Gamma \pm 0,1\%$ и более	
	назначения	$(5 \cdot 10^{10} - 5 \cdot 10^{12})$ Om	$\Pi\Gamma \pm 0,1 \%$ и более $\Pi\Gamma \pm 0,1 \%$ и более	
	The state of the s	(5 TO = 5 TO) OM	111 ± 0,1 76 и облес	
		(0-100)%	$\Pi\Gamma \pm 1,0 \%$ и более	
32	Средства измерений,	воспроизведение	, - , - , - , - , - , - , - , - ,	Дополнение
	предназначенные для	$(1.10^{-5} - 1.10^{-4})$ Om	$\Pi\Gamma \pm 0,0001$ % и	№ 1 к
	измерения и		более,	области
	воспроизведения		2; 3 разряд	аккредитаці
	электрического		2, 5 puspag	и
	сопротивления, меры	$(1.10^{-2} -$	$\Pi\Gamma \pm (0,003-0,03)\%$	l n
	электрического	$-1,111111\cdot10^{7}$) Om,	2; 3 разряд	
	сопротивления	$(50-5\cdot10^4)$ Гц	2, 5 разряд	
	однозначные и	(30 3 10)14		
	многозначные, магазины	$(1,11\cdot10^{-7}-$	$\Pi\Gamma \pm 0,003 \%$ и более,	
	сопротивлений,	$-1,11111\cdot10^7$) OM,	2; 3 разряд	
	калибраторы	$(50-5\cdot10^4)$ Гц	2, 5 разряд	
	сопротивлений, меры-	(30 – 3 10) 1 1		
	имитаторы, омметры,	$(1.10^{-2} -$	$\Pi\Gamma \pm 0,003$ % и более,	
	измерительные мосты,	– 1,11111·10 ⁷) Ом,	2; 3 разряд	
	компараторы	(50 – 120) Гц	2, 5 разряд	
	сопротивлений,	(30 120)11		
	делители напряжения,	измерение		
	средства измерений	$(0-1.10^{13}) \text{ Om}$	$\Pi\Gamma \pm (0,0001 -$	
	других наименований	(0 = 1·10) OM	-4,8·10 ⁻³) % и более,	
	аналогичного		2; 3 разряд	
	назначения		2, 5 разряд	
	nasna ienna	$(0-1\cdot10^4)$ B,	$\Pi\Gamma \pm (0.08 - 0.25) \%$	
		(0 110) b,	111 = (0,00 0,23) /0	
		$(0-5\cdot10^3)$ B,	$\Pi\Gamma \pm (0.9 - 1.1) \%$	
		$(0-3\cdot10^{\circ})$ Б, $(0-1\cdot10^{6})$ Гц	111 - (0,2 1,1) /0	
		(0 – 1.10) 1 ц		
		$(0-1\cdot10^{-10}) \Phi$	$\Pi\Gamma \pm 2$ % и более	
		$(0-1\cdot10)\Phi$,		
		$(0-1\cdot10^5)$ Гц	$\Pi\Gamma \pm (0,1-0,3) \%$	
33	Средства измерений,	$(1.10^{-10} - 1.10^6) \Gamma_{\rm H},$	$\Pi\Gamma \pm (0.04 - 0.05) \%$	Дополнение
	предназначенные для	$(20-2\cdot10^6)$ Гц	2 разряд	№ 1 к
	воспроизведения	(20 – 2.10) 1 ц	- backutt	области

1	2	3	4	5
	индуктивности и взаимной индуктивности	$(20 - 2 \cdot 10^6)$ Гц	2 разряд	ции
	однозначные и	$(1-1\cdot10^6)\ \Gamma_{\rm H},$	$\Pi\Gamma \pm 0.04$ % и более,	
	многозначные, магазины	$(1-1.10)$ Г $_{\rm H}$, $(20-2.10^6)$ Г $_{\rm H}$	2 разряд	
	индуктивности и	(20 — 2.10) ГЦ	2 разряд	
	взаимной	$(1.10^{-10} - 1.10^6) \text{Гн},$	$\Pi\Gamma \pm 0.04$ % и более,	
	индуктивности, средства	(1·10 = 1·10) Гн, (20 – 50) Гц	2 разряд	
	измерений других	(20-30) I II	1 1	
	наименований	$(1.10^{-10} - 1.10^6) \Gamma_{\rm H}$	$\Pi\Gamma \pm 0.04$ % и более,	
	аналогичного	$(1.10^5 - 2.10^6)$ Гц	2 разряд	
	назначения	(1 10 — 2 10) 1 ц		
		$(1 \cdot 10^{-4} - 1 \cdot 10^{9})$ Om	$\Pi\Gamma \pm 0,005 \%$ и более	
34	Средства измерений,	$(1\cdot10^{-16}-10) \Phi$,	$\Pi\Gamma \pm (0.04 - 0.05) \%,$	Дополнение
	предназначенные для воспроизведения	$(20 - 2 \cdot 10^6)$ Гц	3 разряд	№ 1 к области
	электрической ёмкости,	$(1.10^{-16} - 1.10^{-12}) \Phi$	$\Pi\Gamma \pm 0.04$ % и более,	аккредитаци
	тангенса угла потерь,	$(20-2\cdot10^6) \Gamma_{\rm H}$	3 разряд	и
	меры однозначные и	(20 210)14		
	многозначные, магазины	$(1,11\cdot10^{-4}-10) \Phi$	$\Pi\Gamma \pm 0,04 \%$ и более,	
	ёмкости, измерительные	$(20-2\cdot10^6)$ Гц	3 разряд	
	конденсаторы, средства	(== ===)==		
	измерений других	$(1.10^{-16} - 10) \Phi$	$\Pi\Gamma \pm 0,04$ % и более,	
	наименований	(20 –40) Гц	3 разряд	
	аналогичного	3. S.	TIE + 0.04.0/ 5	
	назначения	$(1.10^{-16} - 10) \Phi$	$\Pi\Gamma \pm 0.04$ % и более,	
		$(1\cdot10^5 - 2\cdot10^6)$ Гц	3 разряд	
			$\Pi\Gamma \pm 2,5 \cdot 10^{-5}$ и более	
		$(1 \cdot 10^{-6} - 10)$	111 ± 2,5 10 11 00.1cc	
		$(1\cdot10^{-6}-5\cdot10^{-5})$		
		$(5\cdot10^{-2}-10)$		
35	Средства измерений	$(0-1) \Phi$,	$\Pi\Gamma \pm 0.03$ % и более,	Дополнение
	предназначенные для	$(1\cdot10^6 - 2\cdot10^6)$ Гц	3 разряд	№ 1 к
	измерения параметров			области
	иммитанса,			аккредитаци
	электрической ёмкости,	$(1.10^{-10} - 1.6.10^6) \Gamma_{\text{H}},$	$\Pi\Gamma \pm 0.03$ % и более,	И
	индуктивности,	$(1\cdot10^6 - 2\cdot10^6)$ Гц	2 разряд	
	электрического		TIT + 0.02.0/ 5	
	сопротивления, тангенса	$(1.10^{-4} - 2.10^9)$ Om,	$\Pi\Gamma \pm 0.03 \%$ и более,	
	угла потерь,	$(1\cdot10^6 - 2\cdot10^6)$ Гц	3 разряд	
	проводимости, добротности, частоты,	12	$\Pi\Gamma \pm (0,0001 -$	
	измерители иммитанса,	$(0-5\cdot10^{12})\ \mathrm{Om}$	-0.23)%	
	мосты переменного тока,		2; 3 разряд	
	измерители LCR,		_, 5 paspag	
	установки для измерения	(0 110-7 0	$\Pi\Gamma \pm 0,0001 \%$ и	
	тангенса	$(0-1\cdot10^{-2})$ Om	более,	
	диэлектрических потерь,		2; 3 разряд	
	измерители параметров	(1.10]2 - 10]2 0	Y T T	
	изоляции, средства	$(1 \cdot 10^{12} - 5 \cdot 10^{12})$ Om	$\Pi\Gamma \pm 0,0001$ % и	
	изолиции, средства			

1	2	3	4	5
	наименований аналогичного назначения	$(0-1\cdot10^4),$ (0-10000)%, $(1\cdot10^6-2\cdot10^6)$ Гц	$2;3$ разряд $\Pi\Gamma \pm 0,0001 \text{ и более} \\ \Pi\Gamma \pm 0,01 \% \text{ и более}$	
		(1·10 ⁻¹⁰ – 10) См, (20 – 25) Гц	$\Pi\Gamma \pm 0,1$ % и более	
		$(1\cdot10^{-10}-10)$ См, $(1\cdot10^6-2\cdot10^6)$ Гц	$\Pi\Gamma\pm0,1$ % и более	
		$(1\cdot10^{-4}-1\cdot10^{4}),$ $(20-2\cdot10^{6})$ Гц	$\Pi\Gamma \pm (0.03 - 0.05) \%$	
		$(1\cdot10^{-4}-1\cdot10^4),$ $(1\cdot10^6-2\cdot10^6)$ Гц	$\Pi\Gamma \pm 0,03$ % и более	
		$(1\cdot10^{-7}-1,4\cdot10^5)$ В, $(1\cdot10^{-1}-1\cdot10^6)$ Гц	$\Pi\Gamma \pm (0,006-0,31)\%$	
		$(1\cdot10^{-7}-0.1)$ В, $(1\cdot10^{-1}-1\cdot10^{6})$ Гц	$\Pi\Gamma \pm 0,006$ % и более	
		$(15\cdot10^3 - 1, 4\cdot10^5)$ В, $(1\cdot10^{-1} - 1\cdot10^6)$ Гц	$\Pi\Gamma\pm0,006$ % и более	
		$(1\cdot10^{-7}-1,4\cdot10^5)$ В, $(1\cdot10^{-1}-15)$ Гц	$\Pi\Gamma \pm 0,006~\%$ и более	
		$(1\cdot10^{-7}-1,4\cdot10^5)$ В, $(400-1\cdot10^6)$ Гц	$\Pi\Gamma \pm 0,006~\%$ и более	
		$(1\cdot10^{-7} - 36\cdot10^3)$ A, $(1\cdot10^{-1} - 1\cdot10^6)$ Гц	$\Pi\Gamma \pm (0,006 - 0,3) \%$	
		$(1\cdot10^{-7} - 3\cdot10^{-5})$ А, $(1\cdot10^{-1} - 1\cdot10^{6})$ Гц	$\Pi\Gamma \pm 0,006$ % и более	
		$(15 - 36 \cdot 10^3)$ А, $(1 \cdot 10^{-1} - 1 \cdot 10^6)$ Гц	$\Pi\Gamma \pm 0,006 \%$ и более	
		$(1\cdot10^{-7} - 36\cdot10^3)$ A, $(1\cdot10^{-1} - 15)$ Гц	$\Pi\Gamma \pm 0,006~\%$ и более	
		$(1\cdot10^{-7} - 36\cdot10^3)$ A, $(400 - 1\cdot10^6)$ Гц	$\Pi\Gamma \pm 0,006$ % и более	
		$(1,5\cdot10^{-2}-3,456\cdot10^6)$ BT	$\Pi\Gamma \pm (0,025-0,8)$ %	

1	2	3	4	5
		(вар, В·А), (15 – 400) Гц		
		$(1,5\cdot 10^{-2}-12)$ Вт (вар, В·А), $(15-400)$ Гц	$\Pi\Gamma \pm 0,025~\%$ и более	
		$(4\cdot10^3 - 3,456\cdot10^6)$ Вт (вар, В·А), (15 – 400) Гц	$\Pi\Gamma \pm 0,025~\%$ и более	
		[(-1)-0]	$\Pi\Gamma \pm 0,0001$ и более	
		[(-100) – 0] %	$\Pi\Gamma\pm0.01$ % и более	
		(0 – 360)°	$\Pi\Gamma \pm (0,006-0,1)^{\circ}$ $\Pi\Gamma \pm 0,1$ % и более	
		[(-50) – 300] °C	$\Pi\Gamma \pm (0.05 - 1)$ °C	
		[(-50) - 70] °C	$\Pi\Gamma \pm 0,05$ °С и более	
		[90 – 300] °C	$\Pi\Gamma \pm 0.05$ °С и более	
		$(1\cdot10^{-2}-2,5\cdot10^9)$ Гц	$\Pi\Gamma \pm (2 \cdot 10^{-5} - 0.01) \%$	
		(1·10 ⁻² –12) Гц	$\Pi\Gamma \pm 2.10^{-5}$ % и более	
		$(1\cdot10^6 - 2,5\cdot10^9)$ Гц	$\Pi\Gamma \pm 2.10^{-5}$ % и более	
		(0,01 – 99999,9) c	$\Pi\Gamma \pm 0,012~\%$ и более	
36	Нагрузки постоянного и переменного тока,	(0-1020) A	$\Pi\Gamma \pm (0,004-0,08) \%$	Дополнение № 1 к
	магазины нагрузок, устройства	(0 – 300) А (40 – 1000) Гц	$\Pi\Gamma \pm (0,06-0,3)\%$	области аккредита- ции
	нагрузочные, электронные нагрузки, средства измерений других наименований аналогичного назначения	(45 – 300) A (40 – 1000) Γπ	ПГ ± 0,06 % и более	ции
		(0 – 300) А (40 – 45) Гц	$\Pi\Gamma \pm 0,06$ % и более	
		(0 – 300) А (440 – 1000) Гц	$\Pi\Gamma \pm 0,06$ % и более	
		(0 – 1000) B	$\Pi\Gamma \pm (1,2\cdot10^{-4} - 0,045)\%$	
		(0 – 1000) В (40 – 1000) Гц	$\Pi\Gamma \pm (0.018 - 0.2) \%$	

1	2	3	4	5	
		(0 – 7,5) В (40 – 1000) Гц	$\Pi\Gamma \pm 0,018~\%$ и более		
		(500 – 1000) В (40 – 1000) Гц	$\Pi\Gamma \pm 0,018~\%$ и более		
		(0-1000) В $(40-45)$ Гц	$\Pi\Gamma \pm 0,018~\%$ и более		
		(0 – 1000) В (440 – 1000) Гц	$\Pi\Gamma \pm 0,018~\%$ и более		
		$(0 - 1.10^6) \text{BT}$ (Bap, B·A)	$\Pi\Gamma \pm (0,004-0,1)\%$		
		$(10500 - 1 \cdot 10^6)$ BT (Bap, B·A)	$\Pi\Gamma\pm0,004$ % и более		
	7	$(1.10^{-5} - 2.10^{5})$ Om	$\Pi\Gamma \pm (0,004-0,1)\%$		
		$(1.10^{-5} - 6.25.10^{-3})$ Om	$\Pi\Gamma \pm 0,004$ % и более		
37	Средства измерений	(0,1 – 1000) B	$\Pi\Gamma \pm (0,004-0,01)$ %	Дополнение	
	электроэнергетических величин и показателей	$(0-6.10^3)$ A,	$\Pi\Gamma \pm (0.02 - 0.04) \%$	№ 1 к области	
	качества электрической	$(40-10\cdot10^6)$ Гц	2 разряд	аккредита-	
	энергии, регистраторы и анализаторы качества электрической энергии, вольтамперфазометры,	и анализаторы качества электрической энергии,	(5·10 ⁻⁴ – 3,456·10 ⁶) Вт (вар, В·А), (40 – 1000) Гц	$\Pi\Gamma \pm (0,025 - 0,05)$ %, 2 разряд	ции
	переменного тока, средства измерений других наименований аналогичного	$(5\cdot10^{-4} - 3,456\cdot10^{6})$ Вт (вар, В·А), $(70 - 1000)$ Гц	ПГ ± 0,025 % и более, 2 разряд		
	назначения	[(-1)-1]	$\Pi\Gamma \pm (0,002 - 0,005)$		
		(0 – 360)°	$\Pi\Gamma \pm (0,02-0,03)^{\circ}$		
		$(1\cdot10^{-2} - 2,5\cdot10^9)$ Гц	$\Pi\Gamma \pm (2 \cdot 10^{-5} - 4, 3 \cdot 10^{-3})$		
		$(1\cdot10^{-2}-0,1)$ Гц	$\Pi\Gamma \pm 2.10^{-5}$ % и более		
		$(4\cdot10^5 - 2,5\cdot10^9)$ Гц	$\Pi\Gamma \pm 2.10^{-5}$ % и более		
38	Средства измерений параметров электробезопасности,	$(0-7,5\cdot10^3)$ A	$\Pi\Gamma \pm (0,0007 - 0,095) \%$	Дополнение № 1 к области	
	измерители тока короткого замыкания,	$(1500 - 7, 5 \cdot 10^3) \text{ A}$	$\Pi\Gamma \pm 0,0007 \%$ и более	аккредита-	
	приборы для измерения сопротивления цепи	$(0-99,99\cdot10^3)$ A, $(1\cdot10^{-1}-1\cdot10^4)$ Гц	$\Pi\Gamma \pm (0.05 - 0.095) \%$		

1	2	3	4	5
	«фаза-нуль», устройства для испытания релейных	$(0-99,99\cdot10^3)$ A, $(1\cdot10^{-1}-2\cdot10^{-1})$ Гц	$\Pi\Gamma \pm 0,05~\%$ и более	
	защит, приборы контроля высоковольтных выключателей,	$(0-1,4\cdot10^5)$ B	ΠΓ ± (0,0002 – – 0,045) %	
	установки и устройства для испытания,	$(3\cdot10^3 - 1, 4\cdot10^5)$ B	$\Pi\Gamma \pm 0,0002~\%$ и более	
	контроля и диагностики релейной защиты, средства измерений	$(0-1,4\cdot10^5)$ В, $(1\cdot10^{-1}-1\cdot10^6)$ Гц	$\Pi\Gamma \pm (0,006 - 0,045) \%$	
	других наименований аналогичного назначения	$(5\cdot10^3 - 1, 4\cdot10^5)$ В, $(1\cdot10^{-1} - 1\cdot10^6)$ Гц	$\Pi\Gamma \pm 0,006~\%$ и более	
		$(0-1,4\cdot10^5)$ В, $(1\cdot10^{-1}-2\cdot10^{-1})$ Гц	$\Pi\Gamma \pm 0,006~\%$ и более	
		$(0-1,4\cdot10^5)$ В, $(2,1\cdot10^3-1\cdot10^6)$ Гц	$\Pi\Gamma \pm 0,006 \%$ и более	
		$(0-9,999\cdot10^6)$ Вт (вар, В·А), $(40-400)$ Гц	$\Pi\Gamma \pm (0.02 - 0.5) \%$	
		$(0-9,999\cdot10^6)$ Вт (вар, В·А), $(40-42,5)$ Гц	$\Pi\Gamma \pm 0,02~\%$ и более	
		$(0-5\cdot10^{12}) \text{ Om}$	$\Pi\Gamma \pm (0,0001 - 0,5)\%$	
		$(19,99 \cdot 10^9 - 5 \cdot 10^{12}) \text{ Om}$	ПГ ± 0,0001 % и более	
		[(-1) – 1]	$\Pi\Gamma \pm (0,003 - 0,01)$	
		(0 – 360)°	$\Pi\Gamma \pm (0.03 - 0.05)^{\circ}$	
		$(0-2,5\cdot10^9)$ Гц	$\Pi\Gamma \pm (2 \cdot 10^{-5} - 2, 2 \cdot 10^{-5}) \%$	
		$(5000 - 2,5 \cdot 10^9)$ Гц	$\Pi\Gamma \pm 2.10^{-5}$ % и более	
		$(0-1\cdot10^5)$ c	$\Pi\Gamma \pm (2.10^{-5} - 8.10^{-5}) \text{ c}$	
		$(99999,99 - 1 \cdot 10^5)$ c	ПГ ± 2·10 ⁻⁵ с и более	
		(0 – 1000) %	$\Pi\Gamma \pm (0,3-5)\%$	
		(999,9 – 1000) %	$\Pi\Gamma \pm 0,3 \%$ и более	

1	2	3	4	5
		$(1\cdot10^{-2}-1\cdot10^6)~{\rm Om\cdot m}$	$\Pi\Gamma \pm (0,1-2,1)\%$	
		(999·10³ – 1·10 ⁶) Ом·м	ПГ ± 0,1 % и более	
39	Средства измерений	$(0-1.10^{-4})$ B	$\Pi\Gamma \pm 0,01$ % и более,	
7050	предназначенные для	(0 1 10) B	2, 3 разряд	
	воспроизведения и		2, 5 разряд	
	измерения	(960 - 1000) B,	$\Pi\Gamma \pm 0.02$ % и более,	
	электрических величин,	$(37,5-1250) \Gamma_{\rm H}$	2, 3 разряд	
	установки поверочные,			
	установки	(0-3300) A,	$\Pi\Gamma \pm (0.02 - 0.04) \%$	
	потенциометрические,	$(37,5-1250)$ Γ ц	1, 2 разряд	
	устройства, комплексы			
	и комплекты	$(0-1,0455\cdot10^6)$ BT	$\Pi\Gamma \pm (0,002 -$	
	измерительные, стенды		-0,0039) %	
	контрольно-			
	испытательные,	$(1.10^4 - 1,0455.10^6)$ BT	$\Pi\Gamma \pm 0,002 \%$ и более	
	средства измерений		HE (0.007 0.05) 0.	
	других наименований	$(0-3,456\cdot10^6)$ BT	$\Pi\Gamma \pm (0.025 - 0.05) \%,$	
	аналогичного	(вар, B·A),	2 разряд	
	назначения, с	(37,5-1250) Гц		
	функциями преобразования в		$\Pi\Gamma \pm 0,0001 \%$ и	
	другие величины	$(1 \cdot 10^{-5} - 5 \cdot 10^{12})$ Om	более,	
	другие вели ингв		2, 3 разряд	
		[(1) _ 1]	2 3 1	
		[(-1)-1]	$\Pi\Gamma \pm (0,002 - 0,003)$	
		(0 – 360)°	$\Pi\Gamma \pm (0.02 - 0.03)^{\circ}$	
		$(1\cdot10^{-2}-2,5\cdot10^9)$ Гц	$\Pi\Gamma \pm (2 \cdot 10^{-5} - 4 \cdot 10^{-3}) \%$	
		$(1 \cdot 10^{-2} - 10)$ Гц	$\Pi\Gamma \pm 2.10^{-5}$ % и более	
		$(3.10^3 - 2,5.10^9)$ Гц	$\Pi\Gamma \pm 2.10^{-5}$ % и более	
40	Измерительные	(0-50) A	$\Pi\Gamma \pm (7,3\cdot10^{-4} -$	
	преобразователи,	(/	$-1.10^{-2}\%$	
	модули измерительные,	(0,1-50) A	$\Pi\Gamma \pm 7,3\cdot 10^{-4}$ % и более	
	контроллеры		111 ± 7,5 10 70 H 00.100	
	программируемые,	(0 - 1000) B	$\Pi\Gamma \pm (2,18\cdot 10^{-4} -$	
	барьеры искрозащиты,		$-8.10^{-3})\%$	
	блоки преобразования и	(992 - 1000) B	$\Pi\Gamma \pm 2,18\cdot 10^{-4}$ % и	
	обработки		более	
	измерительной	/0 100\ ·		
	информации,	(0-120) A,	$\Pi\Gamma \pm (6,1\cdot10^{-3}-0,1)\%$	
	регистраторы	$(1 \cdot 10^{-1} - 3 \cdot 10^4)$ Гц	1000 CONTRACTOR CONTRA	
	многоканальные	(0 100) 4		
	технологические,	(0 – 120) A,	$\Pi\Gamma \pm 6,1\cdot 10^{-3}$ % и более	
	усилители	(1·10 ⁻¹ − 40) Гц		
	измерительные, устройства	(0 120) 4		
	ввода/вывода, системы	$(0-120)$ А, $(1\cdot10^4-3\cdot10^4)$ Гц	$\Pi\Gamma \pm 6,1\cdot 10^{-3}$ % и более	
	учета, контроля и	(1-10 – 3-10) І Ц		
	защиты, средства	(0-1000) B,	TIT + (6 10-4 0.052) 0/	
	, •P•	(0 – 1000) B,	$\Pi\Gamma \pm (6.10^{-4} - 0.053) \%$	

1	2	3	4	5
	измерений других	$(1\cdot10^{-1}-1\cdot10^6)$ Гц	2 разряд	
	наименований		1990 1990 1990 1990 1990 1990 1990 1990	
	аналогичного	(690 - 1000) B,	$\Pi\Gamma \pm 6.10^{-4}$ % и более,	
	назначения,	$(1\cdot10^{-1}-1\cdot10^6)$ Гц	2 разряд	
	многофункциональные,	7.0		
	с унифицированными	(0-1000) B,	$\Pi\Gamma \pm 6.10^{-4}$ % и более,	
	ВХОДНЫМИ И	$(1\cdot10^{-1}-20)$ Гц	2 разряд	
	выходными сигналами, с функциями	(0 1000) D	HD : 610404 #	
	преобразования в	(0-1000) B,	$\Pi\Gamma \pm 6.10^{-4}$ % и более,	
	другие величины	$(4\cdot10^5 - 1\cdot10^6)$ Гц	2 разряд	
		$(0-5\cdot10^{12})$ Om	$\Pi\Gamma \pm (1.10^{-4} -$	
		(0-3.10) OM	$-3,3\cdot10^{-3})\%$	
			- 3,3.10) 70	
		$(1.10^5 - 5.10^{12})$ Om	$\Pi\Gamma \pm 1.10^{-4}$ % и более	
		(110 510) OM	111 ± 1 10 70 H 00HCC	
		$(1\cdot10^{-2}-2,5\cdot10^9)$ Гц	$\Pi\Gamma \pm (2.10^{-5} -$	
		() /	$-1.7 \cdot 10^{-3}) \%$	
		$(1\cdot10^5-2,5\cdot10^9)$ Гц	$\Pi\Gamma \pm 2.10^{-5}$ % и более	
		[(-270) - 2500] °C	$\Pi\Gamma \pm (2,18\cdot10^{-4} -$	
			-1,5·10-2) %	
60	Измерители	$(1.10^{-11} - 1.10^{-10})$ CM,	$\Pi\Gamma \pm (0,1-100,0)\%$	Дополне-
	электрической ёмкости,	(20 – 25) Гц		ние № 2 к
	индуктивности,			области
	электрического	$(1.10^{-11} - 1.10^{-10})$ Cm,	$\Pi\Gamma \pm (0,1-100,0)$ %	аккредита-
	сопротивления, тангенса	$(1\cdot10^6 - 2\cdot10^6)$ Гц		ции
	угла потерь,			
	проводимости,			
	добротности, измерители			
	иммитанса, мосты переменного тока,			
	измерители LCR			
61	Преобразователи	Относительное		Дополнение
	измерительные,	напряжение		№ 2 к
	системы измерительные,	тензодатчиков		области
	комплексы	[(-32) - 200] MB/B	$\Pi\Gamma \pm (15.10^{-2} -$	аккредита-
	измерительно-		$-25\cdot10^{-2})\%$	ции
	вычислительные,	Относительное	***	
	модули	напряжение		
		тензорезисторов	$\Pi\Gamma \pm (0,75-1,0) \%$	
		(0-20) MB/B,		
	DA HILOTEVILINIE	(1·10 ⁻² – 20) Гц	OTHER TO MEDELLING	1
201		СКИЕ И РАДИОЭЛЕКТР		Ť
381	Измерители разности фаз	$(0-360)^{\circ}$	$\Pi\Gamma \pm 1^{\circ}$	
383	Ганараторы	(5 – 5·10 ⁶) Γ _Ц (0,01 – 100) Β	$\Pi\Gamma \pm (0,1-1)\%$ $\Pi\Gamma \pm 6\%$	
303	Генераторы испытательных	(0.01 - 100) B $(1.10^{-5} - 0.1)$ c	111 ± 0 70	
	импульсов, калибраторы	$\tau < 1.10^{-9} \text{ c}$	$\Pi\Gamma \pm 0.1T$	
	осциллографов	<u></u>	111 - 0,11	
	осциялографов			

1	2	3	4	5
389	Измерители уровня	$(2\cdot 10^2 - 2, 1\cdot 10^6)$ Гц	$\Pi\Gamma \pm 2 \cdot 10^{-6} \cdot f$	
		[(-100) до 20] дБ	$\Pi\Gamma \pm (0.05 - 0.2)$ дБ	
390	Псофометры	$(20-2\cdot10^5)$ Гц	$\Pi\Gamma \pm 0,1$ дБ	
		[(-90) - 20] дБ		
391	Генераторы шума	(2 – 6,6·10 ⁶) Гц	$\Pi\Gamma \pm (4-5)\%$	
		(0.01 - 40) B	$\Pi\Gamma \pm 6\%$	
392	Анализаторы телефонных	$(0,02-50)$ к Γ ц	ПГ 1 ед. счета	
	каналов	[(-60) – 10] дБ	$\Pi\Gamma \pm (0,2-1,5)$ дБ	
393	Измерители	300 км	$\Pi\Gamma \pm 0.1\%$	
	неоднородностей линий передач			
394	Анализаторы линий	$(0,2-300)$ к Γ ц	$\Pi\Gamma \pm 0.01\%$	
	связи, анализаторы	[(-80) до 10] дБ	$\Pi\Gamma \pm (0.08 - 1)$ дБ	
	цифровых потоков	2,048 МГц;	$\Pi\Gamma \pm 6.0 \cdot 10^{-7}$	
	портативные	34,368 МГц;	$\Pi\Gamma \pm (0.05A \pm X)$	
		139,264 МГц;		
		51,840 МГц;		
		155,52 МГц;		
		622,080 МГц;		
		2488,32 МГц		
		(0,01-10) ТИ		
396	Анализаторы	$(5 - 2050)$ М Γ ц	$\Pi\Gamma \pm (1,5-3,0)$ дБ	
	телевизионного сигнала	(30 - 126) дБ	93 04 04 04 04 04 04 04 04 04 04 04 04 04	
		относительно 1 мкВ		
397	Измерители	M: (0,1-100) %	$\Pi\Gamma \pm (1-10)\%$	
	коэффициента	$(0,1-500,0)$ М Γ ц		
	амплитудной модуляции			
400	Анализаторы спектра,	$(0-3\cdot10^9)$ Гц	$\Pi\Gamma \pm 1.10^{-6}$	
	анализаторы гармоник	(0 - 90) дБ	$\Pi\Gamma \pm 0,5$ дБ	
402	Вольтметры диодные	(0,01 – 100) B	$\Pi\Gamma \pm (0,2-12) \%$	
	электронные	(20 − 1·10 ⁹) Гц		
403	Установки для поверки	$(1.10^{-5} - 300) B$	$\Pi\Gamma \pm (0,3-1) \%$	
	электронных вольтметров	$(0-5\cdot10^7)$ Гц		
	2 разряда			
404	Вольтметры электронные	$(1.10^{-5} - 300)$ B	$\Pi\Gamma \pm (0,5-25) \%$	
	переменного тока	(10 − 1·10 ⁹) Гц	and the state of t	
406	Вольтметры селективные	$(3 \cdot 10^{-5} - 100) B$	$\Pi\Gamma \pm (6-15) \%$	
		$(20-3\cdot10^7)$ Гц		
408	Установки для поверки	(0 – 100) дБ	$\Pi\Gamma \pm (0,05-2,5)$ дБ	
	средств измерения	$(1\cdot10^5 - 3,5\cdot10^9)$ Гц		
	ослабления (Д1) 2 разряда			
409	Аттенюаторы	(0 – 100) дБ (1·10 ⁵ - 3·10 ⁹) Гц	ПГ ± 2 дБ	
41	Источники питания,	(0-1500) B	$\Pi\Gamma \pm (1,2\cdot 10^{-4} -$	Дополнение
	блоки питания и		$-2,7\cdot10^{-3})\%$	№ 1 к
	сигнализации средства	(0-7500) A	$\Pi\Gamma \pm (0.003 - 0.01) \%$	области
	измерений других	(1000 - 7500) A	$\Pi\Gamma \pm 0,003$ % и более	аккредита-
	наименований			ции
	аналогичного	(0-1000) B,	$\Pi\Gamma \pm (0,006-0,1)\%$	

1	2	3	4	5
	аналогичного назначения	(0 − 1000) В, (1 − 5·10 ⁵) Гц	$\Pi\Gamma \pm (0,006-0,1)\%$	
		(600 – 1000) В, (1 – 5·10⁵) Гц	$\Pi\Gamma \pm 0,006~\%$ и более	
		$(0-1000)$ В, $(1,2\cdot10^3-5\cdot10^5)$ Гц	$\Pi\Gamma \pm 0,006~\%$ и более	
		$(0-36\cdot10^3)$ А, $(10-5\cdot10^3)$ Гц	$\Pi\Gamma \pm (0.02 - 0.2) \%$	
		$(48 - 36 \cdot 10^3)$ А, $(10 - 5 \cdot 10^3)$ Гц	$\Pi\Gamma\pm0,02~\%$ и более	
		(0 − 36·10³) А, (10 − 15) Гц	$\Pi\Gamma \pm 0,02~\%$ и более	
		$(0-36\cdot10^3)$ А, $(1\cdot10^3-5\cdot10^3)$ Гц	ПГ ±0,02 % и более	
		(0 – 3,456·10 ⁶) Вт (вар, В·А), (40 – 75) Гц	$\Pi\Gamma \pm (0,025-0,65)\%$	
		(0 – 0,25) Вт (вар, В∙А), (40 – 75) Гц	$\Pi\Gamma \pm 0,025~\%$ и более	
		$(15\cdot10^3 - 3,456\cdot10^6)$ Вт (вар, В·А), $(40-75)$ Гц	$\Pi\Gamma \pm 0,025~\%$ и более	
		(0 – 3,456·10 ⁶) Вт (вар, В·А), (40 – 45) Гц	$\Pi\Gamma \pm 0,025~\%$ и более	
		$(1\cdot10^{-2}-2,5\cdot10^9)$ Γ ц	$\Pi\Gamma \pm (2 \cdot 10^{-5} - 0.01) \%$	
		(1·10 ⁻² − 1) Гц	$\Pi\Gamma \pm 2 \cdot 10^{-5}$ % и более	
		$(1\cdot10^3 - 2,5\cdot10^9)$ Гц	$\Pi\Gamma \pm 2 \cdot 10^{-5}$ % и более	
		$(1 \cdot 10^{-3} - 1 \cdot 10^9)$ Om	ПГ ± 0,1 % и более	
		[(-1) – 0]	$\Pi\Gamma$ ± 0,02 и более	
		(0 – 50) % (0 – 0,5) % (3 – 50) %	$\Pi\Gamma \pm 0.1$ % и более $\Pi\Gamma \pm 0.1$ % и более $\Pi\Gamma \pm 0.1$ % и более	

1	2	3	4	5
42	Средства измерений	$(5.10^{-1} - 1.10^{5})$ B/M,	$\Pi\Gamma \pm (1 - 1,5)$ дБ	Дополнение
	напряженности	$(5-4\cdot10^5)$ Гц		№ 1 к
	электрического и			области
	магнитного поля,	(0-2000) мТл,	$\Pi\Gamma \pm (2-2,5) \%$	аккредита-
	средства измерений	(20 - 9600) Гц		ции
	магнитной индукции,		ASSESSMENT SECTIONS OF THE PROPERTY OF THE PRO	
	магнитного потока,	(0,1-1800) A/M,	$\Pi\Gamma \pm (10 - 15) \%$,	
	магнитного момента,		$\Pi\Gamma \pm (1 - 1,5)$ дБ	
	градиента магнитной	(48 - 52) Гц		
	индукции, измерители			
	параметров	$(125 - 2,25 \cdot 10^6)$ нТл,	$\Pi\Gamma \pm (10-15) \%,$	
	электрического поля,		$\Pi\Gamma \pm (1 - 1,5)$ дБ	
	тесламетры,	(48 - 52) Гц		
	магнитометры,	2 1 2 2		
	измерители параметров	$(4\cdot10^{-3}-4) \text{ A/M},$	$\Pi\Gamma \pm (10-15)\%,$	
	магнитного поля,	75 4105 F	$\Pi\Gamma \pm (1 - 1,5)$ дБ	
	градиентометры,	$(5-4\cdot10^5)$ Гц		
	структуроскопы,	(5 5000) T	ПГ + (1 15) -Г	
	измерители	(5 - 5000) нТл,	$\Pi\Gamma \pm (1 - 1,5)$ дБ	
	коэрцитивной силы, антенны, измерители	(5 4.105) F		
	параметров антенн,	$(5-4\cdot10^5)$ Гц		
	средства измерений	(200 4500) 4/	ПГ ± 4 % и более	
	других наименований	(200 - 4500) A/M	111 ± 4 % и облее	
	аналогичного			
	назначения			
		ЕНИЯ АКУСТИЧЕСКИХ	ВЕЛИЧИН	
412	Калибраторы	1000 Гц	ПΓ ± 0,2 дБ	T
	акустические на	94 дБ и 114 дБ		
	фиксированной частоте 1			
	разряда			
413	Микрофоны и шумомеры,			
	градуированные по	$(2-16\cdot10^4)$ Гц	$\Pi\Gamma \pm (0,5-2,0)$ дБ	
	свободному полю			
414	Аудиометры	(125 – 8⋅10³) Гц	ПГ ± 1 дБ	
415	Фильтры октавные,	$(2-160\cdot10^3)$ Гц	$\Pi\Gamma \pm (0,5-2,0)$ дБ	
	третьоктавные и др.			
417	Виброметры и	$(0-250) \text{ M/c}^2$	$\Pi\Gamma \pm (3 - 20) \%$	
	виброизмерительные	$(0,7-10,0\cdot10^3)$ Гц		
	преобразователи			
		КО-ФИЗИЧЕСКИЕ ИЗМ		7
438	Фотометры (измерители	(1-100) %	$\Pi\Gamma \pm (1-5)\%$	
	светопропускания			
	тонированных стекол)	4 4 0 10		
439	Измерители мощности	$(1 \cdot 10^{-10} - 1 \cdot 10^{-2})$ BT	$\Pi\Gamma \pm (7 - 15) \%$	
	оптического излучения	(800 - 1600) HM		
440	Тестеры, анализаторы	(1·10 ⁻¹⁰ – 1·10 ⁻²) Вт	$\Pi\Gamma \pm (7-15)\%$	
770			111 ± (7 – 13) 70	
*****	оптические	(800 – 1600) нм		

1	2	3	4	5
	измерительные универсальные			
441	Источники оптического	$(1 \cdot 10^{-10} - 1 \cdot 10^{-2})$ BT	$\Pi\Gamma \pm (7 - 15) \%$	
	излучения измерительные	(800 – 1600) нм	111 = (7 = 13) 70	
442	Рефлектометры	$(100 - 5 \cdot 10^5) \text{ M}$	$\Pi\Gamma \pm (1 + 2 \cdot 10^{-5} \text{L}) \text{ M}$	
	оптические	(0 – 40) дБ	± 0,05 А дБ	
443	Анализаторы-			
	рефлектометры, рефлектометры	(1-100) %	$\Pi\Gamma$ ± 2,0 %	
		ЕДИЦИНСКОГО НАЗНА	АЧЕНИЯ	
458	Электрокардиографы			
	электрокардиоскопы,	$(0,1-75,0)$ Γ ц	$\Pi\Gamma \pm 1.5\%$	
	кардиомониторы	(0.06 - 5.0) MB	$\Pi\Gamma \pm (5 - 15) \%$	
	электрокардиоанализа-	(10 - 1400) MC	$\Pi\Gamma \pm (5-15)\%$	
	торы			
459	Электроэнцефалографы,			
	электроэнцефалоскопы,	(0,159 - 120,0) Гц	ΠΓ ± 2 %	
	электроэнцефалоанали- заторы	(0,01-1,0) MB	$\Pi\Gamma \pm (7 - 25) \%$	
460	Электромиографы			
		$(159 \cdot 10^{-3} - 20 \cdot 10^{3})$ Гц	$\Pi\Gamma \pm (5 - 30) \%$	
		[(-25) - 25] MB		
		(0,3-50,0) MB	$\Pi\Gamma \pm (5-15) \%$	
461	Реографы,	72 22 22 22		
	реоплетизмографы,	(0,05 – 60,0) Гц	$\Pi\Gamma \pm (2-10)\%$	
	реопреобразователи,	Ro: (10 – 1000) OM	$\Pi\Gamma \pm (6-15)\%$	
	реоанализаторы	ΔR: (0,05 – 10,0) O _M	$\Pi\Gamma \pm (6-15)\%$	
462	Осциллоскопы	(0.5 - 8) cm/B	ΠΓ ± 10 %	
	медицинские	(0-1) B	$\Pi\Gamma \pm 10\%$	
		(10 - 500) mm/c	$\Pi\Gamma \pm 10\%$	
		$(0-10^3)$ Γ ц		
463	Мониторы медицинские	ЭКГ		
		$(0.03 \cdot 10^{-3} - 5 \cdot 10^{-3})$ B	$\Pi\Gamma \pm 10\%$	
		$SaO_2 (50 - 100) \%$	$\Pi\Gamma \pm 4\%$	
		ЧСС (30 – 200) мин ⁻¹	$\Pi\Gamma \pm 3\%$	
		(20 – 300) мм рт. ст.	$\Pi\Gamma \pm 3$ MM pt. ct.	
166		(20,1 – 44,0) °C	ΠΓ ± 0,2 °C	
466	Пульсоксиметры	канал SpO ₂	ПГ - (2 2) 9/	
		(60 – 99) % канал ЧП	$\Pi\Gamma \pm (2-3)\%$ $\Pi\Gamma \pm 2 \text{ MuH}^{-1}$	
		канал чтт (25 – 220) мин ⁻¹	П ± ∠ МИН	
		(23 – 220) MNH		
		Башкортостан, г. Уфа, б		
100		НИЯ МЕХАНИЧЕСКИХ	T T	
480	Весы автомобильные для	(2 - 10) т	KT 0,2	
	взвешивания в движении		$\Pi\Gamma \pm (0,2-0,25)\%$	

1	2	3	4	5
482	Весы автомобильные для взвешивания в движении	(10 – 60) т	KT 0,2 $\Pi\Gamma \pm (0,2-0,25)$ %	
484	Весы автомобильные для	(60 – 100) т	KT 0,2	
	взвешивания в движении		$\Pi\Gamma \pm (0,2-0,25)\%$	
486	Весы вагонные для взвешивания в движении	(60 – 200) т	КТ средний (III)	
509	Измерители эффективности тормозных систем автомобилей	(98 – 980) H	$\Pi\Gamma \pm (4-5) \%$	
	ИЗМЕРЕНИЯ ПАРАМЕТРОН	В ПОТОКА, РАСХОДА	, УРОВНЯ ОБЪЕМА ВЕЩЕ	ECTB
533	Цистерны автомобильные	до 3 м ³ , (3 - 10) м ³ , свыше 10 м ³	ΠΓ ± 0,2 %	
534	Цистерны автомобильные, железнодорожные	до 3 м ³ , (3 - 10) м ³ , свыше 10 м ³	$\Pi\Gamma \pm (0,3-0,4)\%$	
	ИЗМЕРЕНИЯ ФИЗИКО-Х	ИМИЧЕСКОГО СОСТ.	АВА И СВОЙСТВ ВЕЩЕСТ	ГВ
541	Дозаторы для ввода жидкости-микрошприцы	(0,1-50) мкл	$\Pi\Gamma \pm (2,5-6)\%$	
	453121, Республика Б	башкортостан, г. Стер.	литамак, ул. Дружбы, 39	
		ИЯ ГЕОМЕТРИЧЕСКИ		
579	Шаблоны путевые контрольные	1519,5 мм	ПΓ ± 0,1 мм	
582	Машины оптико- механические	(0-1) M	$\Pi\Gamma \pm (0,001 + L/100000) \text{ mm}$	
596	Нивелиры Н-3	(2 − ∞) mm	СКО (0,3 – 10) мм/км	
603	Головки делительные оптические	(0 – 360)° (0 – 360)°	ΠΓ ± 5" ΠΓ ± 20"	
604	Гониометры	(0 – 360)°	ΠΓ ± 5"	
607	Теодолиты	$(0-360)^{\circ}$ горизонт. углы $[(-55)-60]^{\circ}$ вертикальные углы	CKO (2 – 45)"	-
	ИЗМЕРЕ	НИЯ МЕХАНИЧЕСКИ		
690	Копры маятниковые	$(751 - 2 \cdot 10^3)$ Дж	$\Pi\Gamma \pm (5\cdot 10^{-1} - 2,5\cdot 10)$ Дж	
	ИЗМЕРЕНИЯ ПАРАМЕТРОВ	В ПОТОКА, РАСХОДА		ЕСТВ
707	Бюретки	(10 – 2000) мл	$\Pi\Gamma \pm (0.05 - 2)$ мл 2 разряд	
709	Микропипетки	(0,02-0,2) мл	$\Pi\Gamma \pm (0,00015 - 0,001)$ мл 1 разряд	
710	Пипетки	(100 – 2000) мл	$\Pi\Gamma \pm (0.04 - 0.4)$ мл 1 разряд	

1	2	3	4	5
716	Дозаторы	(100 - 2000) мл	$\Pi\Gamma \pm (1-4)\%$	
719	Приемники - ловушка	(2,0 – 10) мл	$\Pi\Gamma \pm (0.025 - 0.100)$ мл	
737	Корректоры газа	(0,1 – 6) МПа [(-20) – 60] °С	$\Pi\Gamma \pm 0.2; 0.5 \%$	
738	Счетчики объемного расхода газов, реометры	ВПИ $(0.025 - 16) \text{ м}^3/\text{ч}$	$\Pi\Gamma \pm (1-7)\%$	
	ротаметры	ВПИ $(0,025 - 0,06) \text{ м}^3/\text{ч}$ ВПИ $(0,06 - 2,4) \text{ м}^3/\text{ч}$ ВПИ $(0,06 - 2,4) \text{ м}^3/\text{ч}$ ВПИ	$\Pi\Gamma \pm (1-7)\%$ $\Pi\Gamma \pm (1-2,5)\%$	
739	Пробоотборники, аспираторы, пробозаборные устройства	(2,4-16) м ³ /ч ВПИ $(0,025-16)$ м ³ /ч	$\Pi\Gamma \pm (1-7)\%$ $\Pi\Gamma \pm (3-10)\%$	
741	Многониточный измерительный микропроцессорный комплекс «СУПЕРФЛОУ-II»	ВПИ 6 МПа [(-20) – 50] °C	$\Pi\Gamma \pm (0,3-0,5)$ %	
742	Уровнемеры	(0-20) M	$\Pi\Gamma \pm (1 - 500) \text{ MM}$ $\Pi\Gamma \pm (0,5 - 5) \%$	
743	Уровнемеры, датчики уровня, преобразователи уровня	(16-30) m $(0-16)$ m	$\Pi\Gamma \pm (1 - 25) \text{ mm}$ $\Pi\Gamma \pm (1 - 2) \text{ mm}$	
745	Расходомеры акустические	(0 – 2,0) м (по уровню)	КТ 1; 1,5; 2; 3 ПГ \pm (1 $-$ 3) %, не включая ПГ \pm 3 %	(в части КТ)
62	Мерники металлические технические, средства измерений других наименований аналогичного назначения	(20000 – 50000) дм ³	ПГ ± 0,2 % КТ 1	Дополнение № 1 к области аккредита- ции
63	Мерники металлические технические, средства измерений других наименований аналогичного назначения	(20000 – 50000) дм ³	ΠΓ ± 0,5 % ΚΤ 2	Дополнение № 1 к области аккредита- ции
65	Тепловычислители	(5000 – 10000) Гц (0 – 34) Ом (4000 – 111111,10) Ом	$\Pi\Gamma \pm 0,05$ % и более $\Pi\Gamma \pm 0,04$ % и более $\Pi\Gamma \pm 0,04$ % и более	Дополнение № 1 к области аккредита-
		$(10^6$ - ∞) импульсов Вычисление параметров $(10^6$ - $1500000)$ м ³ /ч (т/ч)	$\Pi\Gamma\pm 1$ импульс $\Pi\Gamma\pm 0,02~\%$ и более	

1	2	3	4	5
	ИЗМЕДЕНИЯ	HADHEIHAG DAKWAMI	THE MOMEDELING	
758		ДАВЛЕНИЯ, ВАКУУМН		Ī
138	Задатчик давления «Воздух-2,5»	ВПИ 0,25 МПа	KT 0,05	
69	Калибраторы давления, контроллеры, манометры цифровые, преобразователи давления измерительные и средства измерений других наименований аналогичного назначения	(22 – 100) мА (0 – 22) мА (0 – 11) В	$\Pi\Gamma \pm 0,015$ % и более $\Pi\Gamma \pm (0,015-0,02)$ % $\Pi\Gamma \pm (0,015-0,02)$ %	Дополнение № 1 к области аккредита- ции
	задатчики давления	$[(-0,1)-60]$ M Π a (0-100) MA (0-11) B	$\Pi\Gamma \pm 0,04$ % и более $\Pi\Gamma \pm 0,015$ % и более $\Pi\Gamma \pm 0,015$ % и более	
	ИЗМЕРЕНИЯ ФИЗИКО-			CTB
790	Измеритель деформации клейковины	(0 – 151) усл. ед.	$\Pi\Gamma \pm (1,0-2,5)$ усл. ед.	
792	Хроматографы газовые	(0 – 1·10 ⁻⁵) % (99,97 – 99,99) % предел детектирования не более 5·10 ⁻⁹ г/с	СКО: по площадям $(1-12)\%$, по временам удерживания $(0,02-3,0)\%$, по высотам пиков $(1-10)\%$	
793	Хроматографы жидкостные	(190 – 900) нм (10 – 2100) а.е.м. (0 – 99,99) % предел детектирования не более (4·10 ⁻⁷ – 4·10 ⁻⁵) г/см ³	СКО: по площадям (1 – 10) %, по времени удерживания (0,3 – 10) % по высоте пиков (1 – 10) %	
794	Дозаторы для ввода жидкости - микрошприцы	(0,1 – 50) мкл	$\Pi\Gamma \pm (2,5-3) \%$	
796	Газоанализаторы одного, двух и более негорючих компонентов	(0 – 100) % об. д. (0 – 100) % об. д.	$\Pi\Gamma \pm (0,005-0,02)$ % об. д. $\Pi\Gamma \pm (5-10)$ % об. д.	
797	Газоанализаторы метана в воздухе или суммы предельных	(0 – 100) % об.д. (0 – 100) % НКПР	$\Pi\Gamma \pm (5-15)$ % об. д. $\Pi\Gamma \pm (2-5)$ % НКПР,	

1	2	3	4	5
	углеводородов или горючих газов по метану (СН ₄), газоанализаторы одного, двух и более горючих компонентов, включая водород		исключая ПГ ±5 % НКПР	
798	Газоанализаторы двух- трех и более вредных компонентов	(0 – 10) % об. д. (0 – 10) % об. д.	$\Pi\Gamma \pm (2 \cdot 10^{-6} - 0.2)$ % об. д. $\Pi\Gamma \pm (5 - 10)$ % об. д.	
		$(10^4 - 10^5)$ млн $^{-1}$	$\Pi\Gamma \pm (0.02 - 5000) \mathrm{MJH}^{-1}$	
		$(0-10^4)$ млн $^{-1}$	$\Pi\Gamma \pm (0.02 - 0.1) \mathrm{MJH}^{-1}$	
		$(0-10^4)$ млн ⁻¹	$\Pi\Gamma \pm (100 - 5000) \text{млн}^{-1}$	
799	СИ температуры вспышки нефти и нефтепродуктов	(0 – 10 ⁴) млн ⁻¹ (30 – 400) °C	$\Pi\Gamma \pm (1-2)^{\circ}C$	
802	Электроды стеклянные, в том числе комбинированные, для определения активности ионов водорода, ионоселективные для определения активности (концентрации) ионов в водных растворах	(0 – 14) pH [(-0,5) – 7] pX	ΠΓ ± (0,03 - 0,1) pH $ΠΓ ± 0,03 pX$	
803	Электроды вспомогательные (сравнения)	(199,5 – 204,5) мВ	ПГ ± 3 мВ	
804	Анализаторы растворенного кислорода, оксиметры в воде	$(0-50)$ мг/дм 3	$\Pi\Gamma \pm (2-8) \text{ мг/дм}^3$	
805	Системы капиллярного электрофореза	(185 — 190) нм (600 — 1100) нм	СКО: по времени (1 – 5) % по площади (4 – 8) % По высоте 5 %	
		(190 - 600) нм	СКО: по времени (1 – 2) % по площади (5 – 8) %	
		Предел детектирования не более 1·10 ⁻⁷ г/см ³ Предел обнаружения бензойной кислоты –		

1	2	3	4	5
		0,8 мкг/см ³ Предел обнаружения хлорид-ионов — 0,5 мкг/см ³		
806	Анализаторы содержания нефтепродуктов в воде, концентратомеры	(0 – 1000) мг/ дм³	$\Pi\Gamma \pm (40 - 63) \%$	
807	Анализаторы жидкости флуоресцентные	(25 - 50) мг/дм ³	$\Pi\Gamma \pm (0,005 - 2,5) \text{ мг/дм}^3$	
808	Анализаторы воды и растворов, мутномеры	(0 – 10000) EM	$\Pi\Gamma \pm (0,001 - 0,05) \text{ EM}\Phi$ $\Pi\Gamma \pm (0,1-1) \text{ EM}\Phi$ $\Pi\Gamma \pm (1-3) \%$ CKO 3 %	
		(0-0.05) EM	$\Pi\Gamma \pm (0,001-1) \text{ EM}\Phi$ $\Pi\Gamma \pm (1-10) \%$ CKO 3 %	
809	Титраторы, анализаторы титриметрические	(1·10 ⁻⁴ – 100) % (0,01 – 500) мг	$\Pi\Gamma \pm (1-2)\%$ $\Pi\Gamma \pm (1-3)\%$ $\Pi\Gamma \pm (3-5)\%$ (за исключением 3%) $CKO (0,01-1,5)\%$	
		(0 – 14) ед. рН	$\Pi\Gamma \pm (0.05 - 0.2) \text{ pH}$	
810	Анализаторы спектрометры эмиссионные, рентгенофлоуресцентные	(119 - 1050) нм $(0,0001 - 0,005)$ % м.д. $(99,9 - 100)$ % м.д. $(0 - 100)$ %	$\Pi\Gamma \pm (0,002-30)$ % м.д. СКО $(0,3-6,0)$ % м.д. $\Pi\Gamma \pm (0,002-30)$ % м.д. СКО $(0,3-6,0)$ % м.д. $\Pi\Gamma \pm (1-3)$ % СКО $(0,2-30)$ %	
814	Анализаторы ртути в воде	(0.05 - 30) мкг/дм ³	$\Pi\Gamma \pm (25 - 30) \%$	
815	Нитратомеры	(10 – 19990) мг/дм³	$\Pi\Gamma \pm (10 - 25)$ %, не включая \pm 10 %	
74	Средства измерений содержания компонентов в газовых средах	(0 - 5000) мг/м ³ $(10^4 - 10^5)$ млн ⁻¹ (0 - 10000) млн ⁻¹	$\Pi\Gamma \pm (1,0-2,0)$ % $\Pi\Gamma \pm 0,3$ % и более $\Pi\Gamma \pm (0,3-4)$ %	Дополнение № 1 к области аккредита- ции
122	рН-метры, иономеры и редоксиметры промышленные и лабораторные (преобразователи измерительные и комплекты)	$(3 \cdot 10^{-8} - 1 \cdot 10^{-6})$ моль/дм ³ $(1 \cdot 10^{-6} - 10)$ моль/дм ³	$\Pi\Gamma \pm (1-5)\%$ $\Pi\Gamma \pm (1-5)\%$ (За исключением 1 %)	Дополнение № 2 к области аккредита- ции
129	Анализаторы, спектрометры	(0,0001 – 0,0005) % м. д. (99,9 – 100) % м. д.	CKO (6 – 30) %	Дополнение № 2 к

1	2	3	4	5
	эмиссионные, рентгенофлоуресцент-			области аккредита-
	ные		,	ции
		ЕСКИЕ И ТЕМПЕРАТУР	НЫЕ ИЗМЕРЕНИЯ	ции
832	Средства измерений	(0-50) A	$\Pi\Gamma \pm 0.005$ % и более	
	теплофизических и	(0-1000) B	$\Pi\Gamma \pm 0,002$ % и более	
	температурных величин	$(1.10^{-9} - 120) \text{ A}$	$\Pi\Gamma \pm 0.05$ % и более	
	(измерители температуры,		3,00 70 11 00,000	
	преобразователи сигналов	$(1.10^{-5} - 1000)$ B	$\Pi\Gamma \pm 0.03$ % и более	
	от термоэлектрических	$(10-1\cdot10^6)$ Гц		
	преобразователей и	$(0-1\cdot10^{11})\ \mathrm{Om}$	$\Pi\Gamma \pm 0,002 \%$ и более	
	термопреобразователей	$(1 \cdot 10^{-2} - 1 \cdot 10^6)$ Гц	$\Pi\Gamma \pm 1.10^{-6}$ % и более	
	сопротивлений,			
	устройства контроля и			
	регистрации, блоки			
	преобразования сигналов,			
	потенциометры, мосты,			
	логометры,			
	милливольтметры			
	пирометрические, средства измерений			
	других наименований			
	аналогичного назначения,			
	с унифицированными			
	входными и выходными			
	сигналами, с функциями			
	преобразования в другие			
	величины)			
76	Термометры жидкостные	[(-30) – 300] °C	$\Pi\Gamma \pm (0.01 - 0.02) ^{\circ}\text{C}$	
	стеклянные и средства	(243 – 573) K	2 разряд	
	измерений других			
	наименований			
	аналогичного назначения			
80	Калибраторы	[(-60) – (-50)] °C,	$\Pi\Gamma \pm 0,04$ °С и более	Дополнение
	температуры и средства	(213 – 223,15) K		№ 1 к
	измерений других наименований			области
	аналогичного назначения			аккредита- ции
84	Преобразователи	ТС по ГОСТ 6651- 2009	$\Pi\Gamma \pm (0.03 - 0.08)$ °C	Дополнение
01	измерительные	ΤΠ πο ΓΟСТ 8.585- 2001	$\Pi\Gamma \pm (0,03 - 0,06)$ °C	№ 1 к
	к датчикам температуры с	2001	111 = (0,05 0,25)	области
	унифицированным			аккредита-
	выходным сигналом и			ции
	средства измерений			
	других наименований			
	аналогичного назначения			
N. W. Co.	ИЗМ	ЕРЕНИЯ ВРЕМЕНИ И ЧА		
834	Частотомеры стрелочные	$(10-2\cdot10^4)$ Гц	KT 0,02	
835	показывающие Генераторы	(20 – 2·10 ⁵) Гц	$\Pi\Gamma \pm (1,5\cdot 10^{-5} - 2)\%$	
055	1 onebarohm	(20-210)14	111 - (1,5 10 -2) 70	L

1	2	3	4	5
	низкочастотные (немодулированных синусоидальных сигналов)	$(10^{-6} - 10^2)$ B	$\Pi\Gamma \pm (0, 1 - 10) \%$	
836	Секундомеры электрические	$(1 \cdot 10^{-1} - 6 \cdot 10^2) c$	$\Pi\Gamma \pm (5 \cdot 10^{-2} - 1, 1 \cdot 10^{-1}) \text{ c}$	
839	Секундомеры электронные	(0,1 – 9999,99) c	$\Pi\Gamma \pm 1,5 \cdot 10^{-5} \text{ c}$	
129	Секундомеры электронные	(0 – 35999,99) c	$\Pi\Gamma \pm (0,36-3) c$	Дополнение № 2 к области аккредита- ции
	ИЗМЕРЕНИЯ ЭЛІ	ЕКТРИЧЕСКИХ И МА	ГНИТНЫХ ВЕЛИЧИН	
840	Средства измерений предназначенные для воспроизведения силы	(10 - 30) A	ПГ ± 0,005 % и более, 1, 2 разряд	
	постоянного электрического тока (калибраторы тока, средства измерений других наименований аналогичного назначения)	(0 – 10) A	ПГ ± (0,005 – 0,007) % 1, 2 разряд	
841	Средства измерений силы постоянного электрического тока (амперметры, гальванометры, средства измерений других наименований аналогичного назначения)	(0 – 50) A	$\Pi\Gamma \pm (0,005 - 0,014) \%$	
842	Средства измерений предназначенные для воспроизведения и измерения электрических величин (установки поверочные, установки потенциометрические,	(0-30) А (0-300) А (40-45) Гц (0-300) А $(65-2\cdot10^4)$ Гц	$\Pi\Gamma \pm (0,005-0,007)$ % $\Pi\Gamma \pm 0,05$ % и более $\Pi\Gamma \pm 0,05$ % и более	
	устройства, комплексы и комплекты измерительные, средства измерений других	(0 – 300) А (45 – 65) Гц	$\Pi\Gamma \pm (0.05 - 0.404) \%$	
	наименований аналогичного назначения, с функциями	$(520 - 1000)$ В $(20 - 1 \cdot 10^5)$ Гц	$\Pi\Gamma\pm0,06$ % и более	
	преобразования в другие величины)	(0 – 520) В (20 – 45) Гц	$\Pi\Gamma\pm0,06$ и более %	
		(0 - 520) B $(65 - 1 \cdot 10^5)$ Γιι	$\Pi\Gamma \pm 0,06$ и более %	

1	2	3	4	5
		(0 – 520) В (45 – 65) Гц	$\Pi\Gamma \pm (0.06 - 0.2) \%$	
		$(0-0.05)$ Вт $(40-2\cdot10^4)$ Гц	$\Pi\Gamma\pm0,1$ % и более	
		$(1\cdot10^5-1,9\cdot10^5)$ Вт $(40-2\cdot10^4)$ Гц	$\Pi\Gamma \pm 0,1~\%$ и более	
		$(0-1,9\cdot10^5)$ Вт $(40-45)$ Гц	$\Pi\Gamma\pm0,1~\%$ и более	
		$(0-1,9\cdot10^5)$ Вт $(65-2\cdot10^4)$ Гц	$\Pi\Gamma\pm0,1$ % и более	
		$(0,05-1\cdot10^5)$ Вт $(40-2\cdot10^4)$ Гц	$\Pi\Gamma \pm (0,1-0,5) \%$	
		[(-1) - 1]	$\Pi\Gamma \pm (0,01-0,02)$	
		$(1 \cdot 10^{-3} - 1 \cdot 10^{5}) \text{ Om}$	$\Pi\Gamma \pm (0,002 - 0,004) \%$	
		$(0,01-1)$ Γ ц	ПГ ± 1·10 ⁻⁶ % и более	
		$(2100 - 1 \cdot 10^6)$ Гц	$\Pi\Gamma \pm 1.10^{-6}$ % и более	
		(1 – 2100) Гц	$\Pi\Gamma \pm (1.10^{-6} - 3.10^{-4}) \%$	
845	Делители напряжения	$(10/1 - 1 \cdot 10^3/1)$	KT 0,01; 0,02; 0,05; 0,1	
0.10	постоянного тока	до 1000 В	101 0,01, 0,02, 0,00, 0,1	
848	Средства измерений силы	(1·10 ⁻⁶ - 1·10 ⁻³) A	ПГ± 0,5 % и более, 2	
	переменного электрического тока,	$(0,1-1\cdot10^4)$ Гц	разряд	
	(амперметры, средства	(10 - 21) A	$\Pi\Gamma \pm 0.5 \%$ и более, 2	
	измерений других наименований	$(0,1 - 1 \cdot 10^4)$ Гц	разряд	
	аналогичного назначения)	$(1.10^{-3} - 10)$ A	$\Pi\Gamma \pm 0.5 \%$ и более, 2	
		$(0,1-45)$ Γ ц	разряд	
		$(1 \cdot 10^{-3} - 10) \text{ A}$	$\Pi\Gamma \pm 0,5 \%$ и более, 2	
		$(3\cdot10^3 - 1\cdot10^4)$ Гц	разряд	
		$(1.10^{-8} - 1.10^{-5})$ A	$\Pi\Gamma \pm 0.06 \%$ и более	
		$(0,1-3\cdot10^4)$ Γ ц		
		(1·10 ⁻⁵ – 50) А (0,1 – 16) Гц	$\Pi\Gamma \pm 0,06~\%$ и более	0.0
		$(1\cdot10^{-5} - 50)$ А $(2\cdot10^4 - 3\cdot10^4)$ Гц	$\Pi\Gamma \pm 0,06$ % и более	
		$(1.10^{-5} - 50)$ A	$\Pi\Gamma \pm (0,06-0,1)\%$	

1	2	3	4	5
		$(16-2\cdot10^4)$ Гц		
		(100 – 120) А (40 – 70) Гц	$\Pi\Gamma \pm 0,06$ % и более	
		(0 – 100) А (40 – 45) Гц	$\Pi\Gamma \pm 0,06$ % и более	
		(0 – 100) А (45 – 70) Гц	$\Pi\Gamma\pm0,06$ % и более	
		(0 – 100) А (45 – 65) Гц	$\Pi\Gamma \pm (0,06-0,5)$ %	
849	Средства измерений силы	(1000 - 1025) A	$\Pi\Gamma \pm 0.05$ % и более	
	переменного электрического тока,	(0-1000) A	$\Pi\Gamma \pm (0,05-1,05)\%$	
	(клещи токоизмерительные, средства измерений	$(2,5\cdot10^3 - 5\cdot10^3)$ А $(0-3\cdot10^4)$ Гц	$\Pi\Gamma \pm 0,05~\%$ и более	
	других наименований аналогичного назначения)	$(0-2,5\cdot10^3)$ А $(0-5)$ Гц	$\Pi\Gamma\pm0,05~\%$ и более	
		$(0-2,5\cdot10^3)$ А $(1\cdot10^3-3\cdot10^4)$ Гц	$\Pi\Gamma \pm 0,05~\%$ и более	
850	Средства измерений переменного электрического	$(1000 - 1020)$ В $(0,1 - 10^6)$ Гц	ПГ ± 0,03 % и более	
	напряжения (вольтметры, средства измерений других наименований	(0 – 1000) В (0,1 – 10) Гц	ПГ ± 0,03 % и более	
	аналогичного назначения)	$(0 - 1000)$ В $(10 - 10^6)$ Гц	$\Pi\Gamma \pm (0,03-0,1)\%$	
851	Средства измерений предназначенные для	воспроизведение (10 – 30) A	ПГ ± 0,005 % и более, 2	
	воспроизведения и	(10-30) A	разряд	
	измерения электрических величин (калибраторы универсальные и	(0-10) A	$\Pi\Gamma \pm (0,005 - 0,009)$ %, 2 разряд	
	многофункциональные, приборы универсальные	$(1000 - 1 \cdot 10^5) B$	ПГ ± 0,002 % и более, 3 разряд	
	измерительные, мультиметры цифровые и универсальные, средства	(0 – 1000) B	$\Pi\Gamma \pm (0,002 - 0,0024)$ %, 3 разряд	
	измерений других наименований	$(1025 - 5 \cdot 10^3)$ А $(1 \cdot 10^{-1} - 3 \cdot 10^4)$ Гц	$\Pi\Gamma \pm 0,02~\%$ и более	
	аналогичного назначения, с функциями	$(0-1025)$ А $(1\cdot10^{-1}-1,1\cdot10^4)$ Гц	$\Pi\Gamma \pm (0,02-0,2)\%$	
	преобразования в другие величины)	$(0-1025)$ А $(1,1\cdot10^4-3\cdot10^4)$ Гц	$\Pi\Gamma\pm0,02~\%$ и более	

1	2	3	4	5
		$(440-1\cdot10^5) \text{ B}$ $(1-1\cdot10^6) \Gamma \Pi$ $(0-2,2) \text{ B}$ $(1-1\cdot10^6) \Gamma \Pi$ $(2,2-440) \text{ B}$ $(1-40) \Gamma \Pi$ $(2,2-440) \text{ B}$ $(1,1\cdot10^4-1\cdot10^6) \Gamma \Pi$ $(2,2-440) \text{ B}$ $(40-1,1\cdot10^4) \Gamma \Pi$ $(0,001-0,01) \text{ OM}$ $(5\cdot10^4-111111,11) \text{ OM}$ $(0,001-5\cdot10^4) \text{ OM}$	$\Pi\Gamma \pm 0,03$ % и более $\Pi\Gamma \pm 0,003$ % и более $\Pi\Gamma \pm 0,002$ % и более, 3 разряд $\Pi\Gamma \pm 0,002$ % и более, 3 разряд $\Pi\Gamma \pm 0,002$ % и более, 3 разряд $\Pi\Gamma \pm 0,002$ % и более, 3	
		$(0-1\cdot10^7)$ Ом $(1\cdot10^{-2}-5\cdot10^8)$ Гц измерение $(20-50)$ А	3 разряд $\Pi\Gamma \pm 0,002~\%$ и более $\Pi\Gamma \pm 1\cdot 10^{-6}~\%$ и более $\Pi\Gamma \pm 0,005~\%$ и более,	
		(0-20) A $(1000-1\cdot10^4) B$ (0-1000) B	1; 2 разряд ПГ ± (0,005 – 0,0125) % 1; 2 разряд ПГ ±0,0008 % и более, 3 разряд ПГ ± (0,0008 – – 0,0125) %, 3 разряд	
		$(20-5\cdot10^3)$ А $(1\cdot10^{-1}-3\cdot10^4)$ Гц (0-20) А $(1\cdot10^{-1}-20)$ Гц (0-20) А $(2500-3\cdot10^4)$ Гц (0-20) А (20-2500) Гц	$\Pi\Gamma \pm 0,02$ % и более $\Pi\Gamma \pm 0,02$ % и более $\Pi\Gamma \pm 0,02$ % и более $\Pi\Gamma \pm (0,02 - 0,6)$ %	
		$(1000 - 1 \cdot 10^{4}) B$ $(1 \cdot 10^{-1} - 1 \cdot 10^{6}) \Gamma \mu$ $(0 - 1000) B$ $(1 \cdot 10^{-1} - 20) \Gamma \mu$ $(0 - 1000) B$ $(1 \cdot 10^{4} - 1 \cdot 10^{6}) \Gamma \mu$	ПГ ± 0 ,006 % и более, 2 разряд ПГ ± 0 ,006 % и более, 2 разряд ПГ ± 0 ,006 % и более, 2 разряд	

1	2	3	4	5
		(0 - 1000) B	$\Pi\Gamma \pm (0,006-0,16)\%$,	
		$(20-1\cdot10^4)$ Гц	2 разряд	
		$(6 \cdot 10^7 - 1 \cdot 10^{11})$ Om	$\Pi\Gamma \pm 0.01$ % и более	
		(4.4074.408) 57	77	
		$(1 \cdot 10^7 - 1 \cdot 10^8) \Gamma_{\text{II}}$	$\Pi\Gamma \pm 1.10^{-6}$ % и более	
		$(1\cdot 10^{-2} - 1\cdot 10^7)$ Гц	$\Pi\Gamma \pm (1.10^{-6} - 0.006) \%$	
		$(1.9 \cdot 10^{-10} - 2 \cdot 10^{-10}) \Phi$	$\Pi\Gamma \pm 3$ % и более	
		$(0-1\cdot10^4)$ Гц	TH ± 5 70 H OOMEC	
		(0 1 10) 1 H		
		$(5\cdot10^{-2}-1,1\cdot10^{-1})\ \Phi$	$\Pi\Gamma \pm 3$ % и более	
		$(0-1\cdot 10^4) \Gamma \text{H}$		
852	Средства измерения,	(0.001-20)%	$\Pi\Gamma \pm 0,001~\%$ и более	
	предназначенные для	(0.01 - 200) мин	$\Pi\Gamma \pm 0,1$ мин и более	
	определения погрешности	(0,001 - 200) BA	$\Pi\Gamma \pm 0,003~\mathrm{BA}$ и более	
	трансформаторов, шунтов	(0-30) A	$\Pi\Gamma \pm 0,05 \%$ и более	
	и параметров нагрузки	(0 - 1000) B	$\Pi\Gamma \pm 0,03 \%$ и более	
	вторичных цепей			
	трансформаторов			
	(приборы сравнения,			
	дифференциальные			
	аппараты, средства			
	измерений других наименований			
	аналогичного назначения)			
853	Средства измерений	$(5 \cdot 10^{-2} - 1, 9 \cdot 10^{5})$ Bt (Bap,	ПГ ± 0,15 % и более	
055	электрической мощности	BA)	111 ± 0,13 70 11 003160	
	(ваттметры, варметры,	$(5 \cdot 10^3 - 2 \cdot 10^4) \Gamma_{\text{I}}$		
	измерители полной			
	мощности, средства	$(1,5\cdot10^5-1,9\cdot10^5)$ BT	$\Pi\Gamma \pm 0,15$ % и более	
	измерений других	(вар, ВА)		
	наименований	$(40 - 5 \cdot 10^3)$ Гц		
	аналогичного назначения)			
		[(-1)-1]	$\Pi\Gamma \pm 0.01$ % и более	
0.5.4		(0 - 360)°	ПГ ± 0,3° и более	
854	Средства измерений	(0,1-3) B	$\Pi\Gamma \pm 0.05\%$ и более	
	электрической энергии	(520 – 576) B	$\Pi\Gamma \pm 0,05$ % и более	
	(счетчики электрической энергии, средства	(0,001 – 120) A	$\Pi\Gamma \pm (0.05 - 0.1) \%$	
	измерений других	(0,001 - 120) A	111 - (0,03 - 0,1) /0	
	наименований	$(5 \cdot 10^{-2} - 1, 5 \cdot 10^{-1})$ BT	$\Pi\Gamma \pm 0.05 \%$ и более	
	аналогичного назначения)	(Bap, BA)	- 0,00 /011 001100	
	and a manual control	(
		$(1,44\cdot10^5-1,9\cdot10^5)$ BT	$\Pi\Gamma\pm0,05~\%$ и более	
		(вар, ВА)		
		5 8 9 93		
		$(0-360)^{\circ}$	$\Pi\Gamma \pm (0,3-0,5)^{\circ}$	
		(40 – 45) Гц	$\Pi\Gamma \pm 0,01$ Γ ц и более	

1	2	3	4	5
355	Средства измерений коэффициента мощности, угла фазового сдвига, (фазометры, измерители разности фаз, средства измерений других наименований	(0 - 360)° (40 - 70) Гц	$\Pi\Gamma \pm (0,3-0,5)^{\circ}$	
	аналогичного назначения)			
356	Средства измерений коэффициента масштабного преобразования и угла	(2,4 – 3) кВ / 100:√3; 100 В 50, 60 Гц	$\Pi\Gamma \pm 0.2$ % и более $\Pi\Gamma \pm 3$ мин и более	
	фазового сдвига электрического напряжения	(40,5 – 42) кВ / 100:√3; 100 В 50, 60 Гц	$\Pi\Gamma$ ±0,2 % и более $\Pi\Gamma$ ± 3 мин и более	
	(трансформаторы напряжения, измерительные преобразователи напряжения	(3 – 40,5) кВ / 100:√3; 100 В 50, 60 Гц	$\Pi\Gamma \pm (3 - 10)$ мин	
	измерительные высоковольтные, делители напряжения, средства измерений других наименований			
857	аналогичного назначения)	(1 – 100) κB	$\Pi\Gamma \pm (0.5-1)\%$	
	Средства измерений, предназначенные для измерения и воспроизведения электрического напряжения (киловольтметры, измерительные преобразователи, высоковольтные измерительные и испытательные системы, высоковольтные аппараты и установки, пробойные установки, средства измерений других наименований аналогичного назначения)	(1 – 100) кВ 50 Гц	$\Pi\Gamma \pm (0.5 - 1)\%$	
858	Средства измерений параметров	(40 – 50) A	$\Pi\Gamma \pm 0,1 \%$ и более	
	электробезопасности (измерители тока короткого замыкания,	(0 – 190) кВт (0 – 360)°	$\Pi\Gamma \pm (0,5-3)\%$ $\Pi\Gamma \pm (0,3-0,5)^{\circ}$	
	приборы для измерения			
	сопротивления цепи	$(0,1-1\cdot10^4) \Gamma_{\rm II}$	$\Pi\Gamma \pm (0.01 - 0.2) \%$	

1	2	3	4	5
	«фаза-нуль», устройства для испытания релейных защит, приборы контроля высоковольтных выключателей, установки и устройства для диагностики и контроля, средства измерений других наименований аналогичного назначения) Измерители параметров электробезопасности	$(1 \cdot 10^{-3} - 7 \cdot 10^{3}) c$	$\Pi\Gamma \pm (0,1-0,3)\%$	
859	электроустановок Средства измерений коэффициента и угла масштабного преобразования синусоидального тока (трансформаторы тока, средства измерений других наименований аналогичного назначения)	(1 - 5000) A / (1; 5) A 50, 60 Гц	$\Pi\Gamma \pm (0.02 - 0.05)$ % $\Pi\Gamma \pm (1 - 3)$ мин KT 0.02	
861	Средства измерений, предназначенные для измерения электрической емкости (мультиметры цифровые, электроизмерительные и комбинированные приборы, средства измерений других наименований	$(1,9 \cdot 10^{-10} - 2 \cdot 10^{-10})$ Φ $(0 - 1 \cdot 10^4)$ Γ _I II $(5 \cdot 10^{-2} - 1, 1 \cdot 10^{-1})$ Φ $(0 - 1 \cdot 10^4)$ Γ _I II	$\Pi\Gamma \pm 3$ % и более $\Pi\Gamma \pm 3$ % и более	
862	аналогичного назначения) Источники питания, блоки питания и сигнализации средства измерений других наименований аналогичного назначения	$(0-1000)$ В $(0-30)$ А $(0-1000)$ В $(1-1000)$ Гц $(0-5000)$ А $(1-1000)$ Гц $(0-1,9\cdot10^5)$ Вт (вар, ВА) $(40-75)$ Гц	$\Pi\Gamma \pm (0,002-0,007)$ % $\Pi\Gamma \pm (0,005-0,01)$ % $\Pi\Gamma \pm 0,03$ % и более $\Pi\Gamma \pm 0,05$ % и более $\Pi\Gamma \pm 0,1$ % и более	
863	Установки для поверки и градуировки электроизмерительных приборов	- (0,15 – 1000) В - (0,1 – 50) А ~ (0,5 – 1000) В ~ (0,1 – 300) А 50 Гц	КНИ 2%	
86	Средства измерений, предназначенные для	(0-30) A	$\Pi\Gamma \pm (0,005 - 0,007) \%$	Дополнение № 1 к

1	2	3	4	5
	воспроизведения и измерения	(0 – 300) A (40 – 45) Гц	$\Pi\Gamma\pm0.05$ % и более	области аккредитаци
	электрических величин (установки поверочные, установки	$(0 - 300)$ A $(65 - 2 \cdot 10^4)$ Γιι	$\Pi\Gamma \pm 0,05 \%$ и более	И
	потенциометрические, устройства, комплексы и комплекты	(0 – 300) А (45 – 65) Гц	$\Pi\Gamma \pm (0.05 - 0.404) \%$	
	измерительные, средства измерений других наименований	(520 - 1000) B $(20 - 1 \cdot 10^5) \Gamma \text{H}$	$\Pi\Gamma \pm 0,06$ % и более	
	аналогичного назначения, с	(0 – 520) B (20 – 45) Γιι	$\Pi\Gamma \pm 0,06$ % и более	
	функциями преобразования в другие величины)	$(0-520)$ В $(65-1\cdot10^5)$ Гц	$\Pi\Gamma\pm0,06$ % и более	
		(0 – 520) В (45 –65) Гц	$\Pi\Gamma \pm (0,06-0,2)$ %	
		(0 - 0.05 Bt $(40 - 3 \cdot 10^4) \Gamma$ ц	$\Pi\Gamma \pm 0,1~\%$ и более	
		$(1\cdot10^5 - 1,9\cdot10^5)$ Вт $(40-2\cdot10^4)$ Гц	ПГ ± 0,1 % и более	
		(0 – 1,9·10 ⁵) Вт (40 – 45) Гц	ПГ ± 0,1 % и более	
		$(0-1,9\cdot10^5)$ Вт $(65-70)$ Гц	$\Pi\Gamma \pm 0,1$ % и более	
		$(0.05 - 1 \cdot 10^5)$ Вт $(40 - 70)$ Гц	$\Pi\Gamma \pm (0,1-0,5)\%$	
		[(-1)-1]	$\Pi\Gamma \pm (0.01 - 0.02)$	
		$(1 \cdot 10^{-3} - 1 \cdot 10^5)$ Om	$\Pi\Gamma \pm (0,002-0,004)\%$	
		(0,01 – 1) Гц	$\Pi\Gamma \pm 1.10^{-6}$ % и более	
		$(2100 - 1 \cdot 10^6)$ Гц	$\Pi\Gamma \pm 1.10^{-6}$ % и более	
		(1 – 2100) Гц	$\Pi\Gamma \pm (1.10^{-6} - 3.10^{-4}) \%$	
87	Средства измерений электрической мощности (ваттметры, варметры, измерители полной	$(1,5 \cdot 10^5 - 1,9 \cdot 10^5)$ Вт (вар, ВА) $(40 - 5 \cdot 10^3)$ Гц	$\Pi\Gamma \pm 0,15$ % и более	Дополнение № 1 к области аккредитаци
	мощности, средства	[(-1)-1]	$\Pi\Gamma \pm 0.01$ % и более	И

1	2	3	4	5
	измерений других наименований аналогичного назначения)	(0 – 360)°	$\Pi\Gamma\pm0.3^\circ$ и более	
88	Средства измерений, предназначенные для измерения и воспроизведения	воспроизведение $(1\cdot10^{-5}-1\cdot10^{-3})$ Ом	ПГ ± 0,002 % и более, 3 разряд	Дополнение № 1 к области аккредитаци
	электрического сопротивления, меры электрического сопротивления	измерение (0 – 1·10 ¹¹) Ом	$\Pi\Gamma \pm (0,002 - 0,005)$ %, 3 разряд	И
	однозначные и многозначные,	$(0-3\cdot10^3)$ B	$\Pi\Gamma \pm (0,08-0,1)\%$	
	магазины сопротивлений, калибраторы	$(0-1\cdot10^3)$ В, $(0-5\cdot10^3)$ Гц	$\Pi\Gamma \pm (0.9 - 0.93) \%$	
	сопротивлений, меры-	(0-0,4) A	$\Pi\Gamma \pm (0,2-0,22)$ %	
	измерительные мосты, компараторы сопротивлений,	$(0-300)$ А, $(45-5\cdot10^3)$ Гц	$\Pi\Gamma \pm (1,5-1,52)\%$	
	делители напряжения, средства измерений	$(0-4\cdot 10^{-2}) \Phi$	$\Pi\Gamma \pm (1,2-1,22)$ %	
	других наименований аналогичного назначения	$(0-1\cdot10^5)$ Гц	$\Pi\Gamma \pm (0,1-0,11) \%$	
		СКИЕ И РАЛИОЭЛЕКТ	РОННЫЕ ИЗМЕРЕНИЯ	
864	Осциллографы	$(10-5\cdot10^7)$ Гц	$\Pi\Gamma \pm (0,5-3)\%$	
	одноканальные, многоканальные	$(10 - 5 \cdot 10^7)$ Гц	$\Pi\Gamma \pm (10 - 25) \%$	
		$(1 \cdot 10^{-6} - 0,008) \text{ B}$ $(1 \cdot 10^{-6} - 0,008) \text{ B}$	$\Pi\Gamma \pm (0,5-3)\%$ $\Pi\Gamma \pm (10-25)\%$	
866	Источники питания,	(299 – 1000) B	ПΓ ± 0,002 % и более	
	блоки питания и сигнализации средства	(0 – 299) B	$\Pi\Gamma \pm (0,002-0,024)\%$	
	измерений других наименований аналогичного назначения	(0-30) A	$\Pi\Gamma \pm (0,005 - 0,039) \%$	
		ИКО-ФИЗИЧЕСКИЕ ИЗ	МЕРЕНИЯ	
868	Спектрофотометры атомно-абсорбционные	(0,05-20) мг/л	ΠΓ ± 2 %	
869	Рефрактометры- плотномеры, денсиметры	(1,2 – 1,32) nD	$\Pi\Gamma \pm (5.10^{-5} - 1.10^{-5}) \text{ nD}$	
870	Спектрофотометры УФ, видимой и ближней ИК-	КПР (0 – 100) %	$\Pi\Gamma \pm (1,5-2)\%$	
	областей спектра	ОП (2 – 3,3) Б	$\Pi\Gamma \pm (0,002 - 0,01) \text{ B}$	

1	2	3	4	5
	излучения, Фурье-	ОП (0-2) Б	$\Pi\Gamma \pm (0,002 - 0,003) \text{ B}$	
	спектрометры, спектрометры	ДВ (350 – 15500) см ⁻¹	СКО (0,01 – 0,5) %	
		ДВ (14700 – 15500) см ⁻¹	$\Pi\Gamma \pm (0,01-2,0) \text{ cm}^{-1}$	
		ДВ (350 – 14700) см ⁻¹	$\Pi\Gamma \pm (0.01 - 0.02) \text{ cm}^{-1}$	
871	Фотометры пламенные, анализаторы	$(0.02 - 1000)$ мг/дм 3	$\Pi\Gamma \pm (0.05 - 2.5) \%$	
	фотометрические	(0 - 125000) частиц загрязнителя	ΠΓ ± 3 %	
872	Анализаторы иммуноферментные и биохимические	(0 – 3) Б	$\Pi\Gamma \pm (0,0005 - 0,007) \text{ B}$ $\Pi\Gamma \pm (0,6 - 1,0) \text{ B}$ $\Pi\Gamma \pm 7 \%$	
873	Фотометры лабораторные медицинские	(0 – 3) Б (1 – 100) %	$\Pi\Gamma \pm (0.15 - 0.2)$ Б $\Pi\Gamma \pm (1.0 - 2.0)$ %, не включая ± 1.0 %	
874	Рефрактометры лабораторные типа Пульфриха, Аббе и специализированные	(1,2 – 1,70) nD (1,2 – 1,70) nD	$\Pi\Gamma \pm (6.10^{-5} - 7.10^{-5}) \text{ nD}$ $\Pi\Gamma \pm (2.10^{-4} - 5.10^{-4}) \text{ nD}$	
137	CHARTMONOTON ATOMIO	(0 - 100) % Brix Оптическая плотность	$\Pi\Gamma \pm (0,5-1,0)$ % Brix	Дополнение
137	Спектрометры атомно- абсорбционные	(0 – 3,3) Б (1 – 50) мг/дм ³	$\Pi\Gamma \pm (0.01 - 0.033) \text{ F}$ CKO $(4 - 30) \%$	№ 2 к области аккредита- ции
139	Анализаторы иммуноферментные и биохимические	Оптическая плотность (0,3 – 3,5) Б	$\Pi\Gamma \pm (5-7)\%$	Дополнение № 2 к области аккредита- ции
	ЭЛЕМІ	ЕНТЫ ИЗМЕРИТЕЛЬНЫ		
887	Информационно- измерительные системы, контроллеры программируемые, контроллеры программно-технические,	$ [(-0,01) - 60] B $ $ (0,001 - 0,1) A $ $ (1 - 1 \cdot 10^5) \Gamma \mathbf{u} $ $ (0,001 - 1111111,10) Ом $	$\Pi\Gamma \pm (0.05 - 5) \%$	
	устройства связи с объектом, устройства сбора и передачи данных, модули ввода-вывода, прео-бразователи измерительные, каналы измери-тельные измери-			

1	2	3	4	5
	тельных систем, системы			
	измерительные,			
	измерительно-			
	вычислительные			
	комплексы (как			
	автономные, так и			
	входящие в состав более			
	сложных структур -			
	измерительных систем,			
	систем учета			
	энергоресурсов, в том			
	числе систем			
	автоматизированных			
	информационно-			
	измерительных			
	коммерческого учета			
	электро-энергии (АИИС			
	КУЭ), систем			
	телемеханики и связи,			
	контроля,	4		
	диспетчеризации,			
	диагностирования,			
	распознавания образов,			
	систем противоаварийной			
	защиты, автоматических			
	систем управления			
	технологическими			
	процессами,	1		
	измерительных систем в			
	составе испытательного			
	оборудования)			
89	Преобразователи	ТС по ГОСТ 6651-2009	$\Pi\Gamma \pm (0.03 - 0.1)^{\circ}C$	Дополнение
	измерительные сигналов		$\Pi\Gamma \pm (0.03 - 0.3)^{\circ}C$	№ 1 к
	от датчиков	ТП по ГОСТ 8.585-2001	(0,00 0,0)	области
	температуры,			аккредита-
	преобразователи	(50 – 100) кГц	$\Pi\Gamma_{\rm f}\pm0.05~\%$ и более	ции
	измерительные			
	нормирующие,	[(-11) - (-10)] B	$\Pi\Gamma_{\rm u} \pm 0.02 \%$ и более	
	преобразователи	$(10-11) \mathrm{B}$	$\Pi\Gamma_{\rm u} \pm 0.02 \%$ и более	
	измерительные			
	дозирующие, устройства	[(-10) - 10) B	$\Pi\Gamma_{\rm u} \pm (0.02 - 0.025) \%$	
	контроля и регистрации,			
	блоки преобразования	[(-100) – (-23)] MA	$\Pi\Gamma_{\rm i} \pm 0.02$ % и более	
	сигналов модули ввода-	(60 - 100) MA	$\Pi\Gamma_{i} \pm 0.02 \%$ и более	
	вывода, измерители-		,	
	регуляторы	[(-23) - 60) MA	$\Pi\Gamma_{i} \pm (0.02 - 0.03) \%$	
	температуры,	5.0 - 50 - 50		
	потенциометры, мосты	(0,002-0,01)	$\Pi\Gamma_{\rm r} \pm 0.01 \%$ и более	
	уравновешенные	(100000 – 111111,10) Ом	$\Pi\Gamma_{\rm r} \pm 0.01$ % и более	
	автоматические,			
	логометры	(0,01-100000,0) Ом	$\Pi\Gamma_{\rm r} \pm (0.01 - 0.02) \%$	

1	2	3	4	5
	магнитоэлектрические, милливольтметры пирометрические, и средства измерений других наименований			
	аналогичного назначения, с функциями преобразования в другие			
	величины			
		ашкортостан, г. Стерлит	гамак, ул. Фурманова, 1	8
	ИЗМЕРЕНИЯ ПАРАМЕТРО			
890	Установки расходомерные	(0.02 - 150) м ³ /ч Ду $(15 - 150)$ мм	$\Pi\Gamma \pm (0.05 - 10) \%$	
892	Расходомеры, преобразователи объемного расхода жидкости, счетчики жидкости тахометрические	(0,02 - 100) м ³ /ч Ду (15 - 100) мм	$\Pi\Gamma \pm (0,15-0,75)$ %	
	ротаметры	$(40-100)$ м 3 /ч Ду $(15-100)$ мм $(0,02-40)$ м 3 /ч Ду $(40-100)$ мм	$\Pi\Gamma \pm (0,15-10)\%$ $\Pi\Gamma \pm (0,15-1)\%$	
893	Теплосчетчики	$(2,1\cdot10^{-9}-9\cdot10^8)$ ГДж $(0,02-100)$ м ³ /ч $(0,02-100)$ т/ч $[(-50)-400]$ °C $\Delta t (1-195)$ °C	$\Pi\Gamma \pm (2-8) \%$ $\Pi\Gamma \pm (0,75-15) \%$ $\Pi\Gamma \pm (0,15-15) \%$ $\Pi\Gamma \pm (0,15-2) ^{\circ}C$ $\Pi\Gamma \pm (0,5-2) \%$	
	тепловычислители	(0 – 5000) Гц (0 – 111111,10) Ом (0 – 20) мА	$\Pi\Gamma \pm (0,005-1)$ % $\Pi\Gamma \pm (0,05-2)$ % $\Pi\Gamma \pm (0,05-1,5)$ % Вычисление тепловой энергии (количества теплоты) $\Pi\Gamma \pm (0,1-2)$ %	
90	Установки расходомерные	$(0.01 - 0.02) \text{ m}^3/\text{ч} (\text{т/ч})$	ПГ ± 0,25 % и более	Дополнение № 1 к области аккредита- ции
92	Расходомеры, преобразователи объемного расхода жидкости, счетчики жидкости тахометрические	$(0.02 - 283) \text{ m}^3/\text{4}$	ПГ ± 0,75 % и более	Дополнение № 1 к области аккредита- ции
	ротаметры	$(0.02 - 40) \text{ m}^3/\text{ч}$	$\Pi\Gamma \pm (0,75-1,0)\%$	

1	2	3	4	5
93	Теплосчетчики и средства измерений	$(0.02 - 0.025) \text{ m}^3/\text{q}$ (0.02 - 0.025) T/q	$\Pi\Gamma_{Qv}\pm0.75~\%$ и более $\Pi\Gamma_{Qm}\pm0.75~\%$ и более	Дополнение № 1 к
	других наименований аналогичного назначения	$(300 - 330) \text{ m}^3/\text{q}$ (300 - 330) T/q	$\Pi\Gamma_{Qv} \pm 0.75$ % и более $\Pi\Gamma_{Qm} \pm 0.75$ % и более	области аккредита- ции
		$(0.025 - 300) \text{ m}^3/\text{y}$ (0.025 - 300) T/y	$\Pi\Gamma_{Qv} \pm (0.75 - 0.8) \% \Pi\Gamma_{Qm} \pm (0.75 - 0.8) \%$	
		(0 – 99999999) ГДж	$\Pi\Gamma \pm (0,2-2) \%$	V 1
		[(-50) - 0] °C (150 - 600) °C	ПГ± 0,15 °С и более ПГ± 0,15 °С и более	
		(0 – 150) °C	$\Pi\Gamma \pm (0,15 - 0,2)$ °C	
		Δt (150 – 195) °C	$\Pi\Gamma \pm 0,2$ % и более	
		$(2,5-30) \text{ M}\Pi a$ $(0-2,5) \text{ M}\Pi a$	$\Pi\Gamma \pm 0.05$ % и более $\Pi\Gamma \pm (0.05 - 0.15)$ %	
		(2000 – 10000) Гц	$\Pi\Gamma\pm0,05$ % и более	
		(0 – 20) mA (0 – 2000) mB	$\Pi\Gamma \pm (0.05 - 0.15)$ % $\Pi\Gamma \pm 0.02$ мВ и более	
		(0 – 111111,10) Ом (0 - ∞) импульсов	$\Pi\Gamma \pm 0,04$ % и более $\Pi\Gamma \pm 1$ импульс	
		Башкортостан, г. Нефтен		
071		-ХИМИЧЕСКОГО СОСТ.	$\frac{\text{ABA } \text{CBOUCTB BEILH}}{ \Pi\Gamma \pm 0.3 \text{kr/m}^3}$	ECIB
971	Плотномеры топлива, нефти и нефтепродуктов	(790 – 910) кг/м ³	111 ± 0,5 K1/M	
988	рН-метры, иономеры и редоксметры промышленные и	[(-1) – 20] ед. рН (рХ)	$\Pi\Gamma \pm (0,01-0,2)$ ед. $pH(pX)$	
	лабораторные (преобразователи измерительные и комплекты)	[(-2100) – 2100] мВ	$\Pi\Gamma \pm (0 - 50)$ мВ	
992	Титраторы, анализаторы титриметрические	(0 – 14) pH	ΠΓ ± 0,05 pH	
		ЕРЕНИЯ ВРЕМЕНИ И Ч	АСТОТЫ	
1008	Секундомеры механические	(0 – 60) мин	КТ 2 ПГ ± 1,8 с за 60 мин КТ 3 ПГ ± 1 с за 30 мин	
	ОПТ	⊥ ИКО-ФИЗИЧЕСКИЕ ИЗ№		
1044	Рефрактометры лабораторные типа Аббе	$(1,25-1,34) \text{ n}_{\text{D}}$ $(1,53-1,65) \text{ n}_{\text{D}}$	$\Pi\Gamma \pm (6.10^{-5} - 5.10^{-4})$	

1	2	3	4	5
	453505, Республик	са Башкортостан, г. Бел	орецк, ул. Кирова, 68	
	ИЗМЕРЕН	НИЯ ГЕОМЕТРИЧЕСКИ	Х ВЕЛИЧИН	
1058	Меры (метры) брусковые	(0-1000) mm	$\Pi\Gamma \pm (0,5-1,5)$ mm	
	деревянные	× 1 × 2		
1066	Ростомеры медицинские	(150 - 2500) mm	$\Pi\Gamma \pm 4 \text{ mm}$	
	ИЗМЕРЕ	НИЯ МЕХАНИЧЕСКИХ	К ВЕЛИЧИН	
1112	Динамометры	(0,3-14) H	$\Pi\Gamma \pm 2.5\%$	
	медицинские			
	электронные ручные			
	ИЗМЕРЕНИЯ ФИЗИКО->			CTB
1139	Газоанализаторы,	(4,4-30) % of.	$\Pi\Gamma \pm (3-5) \% \text{ of.}$	
	сигнализаторы метана,			
	оксида углерода СН4, СО			
		(0 20) 0/ 05	ПГ + (2 5) 0/ об т	
	кислорода О2	(0-30)% of.	$\Pi\Gamma \pm (3-5)$ % об. д $\Pi\Gamma \pm (2-25)$ % мг/м ³	
1140	Гозовия учиствия и учиствия	$\frac{(0-200) \text{ M}\Gamma/\text{M}^3}{(0-1,7)\%}$	$\Pi\Gamma \pm (2-23)\% MI/M$ $\Pi\Gamma \pm 20\%$	
1140	Газоанализаторы пропана	(0-1,7) 76	111 ± 20 %	
	в воздухе или суммы			
	предельных			
	углеводородов по пропану (С ₃ Н ₈)			
		шкоптостан г Октабли	⊥ ьский, ул. Луначарского	0.4
		НИЯ ГЕОМЕТРИЧЕСКИ		<i>y</i> , .
1188	Меры (метры)	до 1000 мм	$\Pi\Gamma \pm (0.5 - 1.5) \text{ MM}$	
1100	брусковые деревянные		(-)-	
		шкортостан, город Сала	ават-6, Северная промз	она
I	ИЗМЕРЕНИЯ ПАРАМЕТРО			
165	Расходомеры массовые	$(0,2-2200)$ T/4 ($M^3/4$)	$\Pi\Gamma \pm (0.75 - 7) \%$	Дополнение
	Promass		72	№ 2 к
				области
				аккредита-
				ции

И.о. директора ФБУ «ЦСМ Республики Башкортостан»

годпись уполномоченного лица С.А. Севницкий инициалы, фамилия уполномоченного лица